

Coperating Instructions

Frequency converters VAU 4/4 VAU(w) 7.5/3 VAU 11-22/3

Contents

1	General information	.4
1.1	Notes relating to the documentation	.4
1.1.1	Warnings	.4
1.1.2	Warning symbols used	.4
1.1.3	Signal words	.5
1.1.4	Information notices	.5
1.2	Markings at the frequency converter	.5
1.3	Qualified personnel	.6
1.4	Intended use	.6
1.5	Responsibility	
1.6	CE marking	
1.7	Safety information	.7
1.7.1	General	.7
1.7.2	Transport and storage	.8
1.7.3	Notes for commissioning	.8
1.7.4	Notes for operation	
1.7.5	Maintenance and inspection	
1.7.5.1	Cleaning of frequency converters	
1.7.5.2	Measuring the insulation resistance at the control terminals	11
	Measuring the insulation resistance at the power terminals	
1.7.5.4	Pressure test in a VAU	
1.7.6	Repairs	12
2	Frequency converter overview	13
2.1	Scope of delivery	
2.2	Description of frequency converter VAU	
0		
3	Installation	
3.1	Safety information for installation	
3.2	Installation requirements	
3.2.1	Suitable ambient conditions	
3.2.2	Connection versions VAU 4/4 & VAU(w) 7.5/3	
3.2.3	Connection version VAU 11-22/3	
3.2.4	Short circuit and earth leakage protection	
3.2.5	Cabling instructions	
3.2.6	Avoidance of electromagnetic interferences	
3.3	Installation of a frequency converter integrated into the motor	
3.3.1	Mechanical installation	
3.3.1.1	Mechanical installation of the VAU 4/4 & VAU(w) 7.5/3	
	Mechanical connection of the water cooling of the VAUw 7.5/3	
	Mechanical installation of the VAU 11-22/3	
3.3.2	Connection space	
3.3.3	Power connection	
3.3.3.1	Power connection of the VAU 4/4 & VAU(w) 7.5/3	26

3.3.3.2	Power connection of the VAU 11-22/3	27
3.3.4	Brake resistance connections (VAU 4.4 & VAU(w) 7.5/3 only)	27
3.3.5	Control connections	28
3.3.6	Relays	29
3.3.7	RS485 interface	29
3.4	Local operation and display	30
3.5	Optional accessories	30
3.6	Installation of a wall-mounted frequency converter	31
3.6.1	Suitable installation location for wall mounting	
3.6.2	Mechanical installation	31
3.6.3	Power connection	34
3.6.4	Brake chopper	34
3.6.5	Control connections	34
4	Commissioning	35
4.1	Safety information for commissioning	35
4.2	General information	35
4.2.1	KombiTool	36
4.3	Basic configuration	36
4.3.1	Pressure/vacuum mode	36
4.3.2	Operating mode	36
4.3.2.1	Speed-controlled operation	36
4.3.2.2	Sensorless control (internal control)	37
4.3.2.3	Process control (sensor-guided PID control)	37
4.3.3	Setpoint origin	
4.3.4	Start/stop origin (release)	
4.4	Block diagram	38
5	Parametrisation	39
5.1	Parameter description	39
5.2	Diagnostic parameters	52
6	Error detection and removal	53
6.1	List of errors and system faults	53
6.2	Table of possible error messages	54
7	Disassembly and disposal	57
7.1	Disassembly of the frequency converter	57
7.2	Information for correct disposal	57
8	Technical data	58
8.1	General data	58
8.2	Derating of the output power	60
8.2.1	Derating due to increased ambient temperature	60
8.2.2	Derating due to installation altitude	61
8.2.3	Derating due to cycle frequency	61

9	Approvals, standards and directives	
9.1	EMC limit classes	
9.2	Classification according to IEC/EN 61800-3	62
9.3	Standards and directives	62
9.4	UL approval	63
9.4.1	UL specification (English version)	63
9.4.2	Homologation CL (version en française)	65
10	Information for maintenance and service	68

1 General information

1.1 Notes relating to the documentation

The following information explains how to navigate through the documentation. Read these instructions carefully. They contains important information for operating the frequency converter (VAU). We assume no liability for any damage resulting from non-observance of these instructions.

These instructions form part of the product and apply exclusively to the VAU series (VARIAIR UNIT) of Gebrüder BECKER GmbH.

Make sure to hand these instructions to the plant operator to be readily available when required. Store these instructions and all other applicable documents carefully to be readily available when required.

1.1.1 Warnings 4

The warnings refer to life-threatening dangers. Serious injuries possibly resulting in death may occur. Each warning consists of the following elements:

• ODANGER • Mortal danger from electric shock!

ODeath or serious injury!

ODisconnect the frequency converter from the voltage supply and protect it against re-activation.

Fig. 1: Structure of warnings

- warning symbol
- e signal word
- - type and origin of the danger
- potential consequence(s) of non-compliance
- remedy

1.1.2 Warning symbols used

Danger (general)

Danger from electric shock and electrical discharge

Danger from hot surfaces!

1.1.3 Signal words

Signal words are used to identify the severity of the danger.

DANGER

Indicates a direct hazard with a high level of risk, which, if not avoided, will result in death or serious injury.

WARNING

Indicates a hazard with a moderate level of risk, which, if not avoided, will result in death or serious injury.

CAUTION

Indicates a hazard with a low level of risk, which, if not avoided, may result in minor or moderate injury or property damage.

Information notices 1.1.4

Information notices contain important instructions for the installation and trouble-free operation of the frequency converter. They must be complied with at all times. The information notices also point out that non-compliance may result in property or financial damages.

NT INFORMATION The frequency converter may only be assembled, operated, maintained or installed by trained and

qualified personnel.

Fig. 2: Example of an information notice

1.2 Markings at the frequency converter

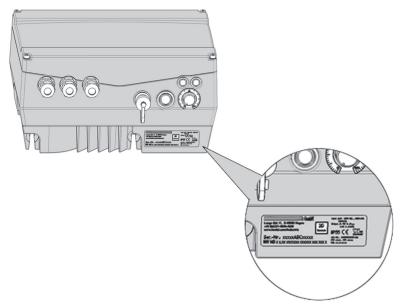


Fig. 3: Markings at the frequency converter

Signs and labels have been affixed to the frequency converter. These may not be altered or removed.

Symbol	Meaning		
Danger from electric shock and electrical discharge			
Danger from electric shock and electrical discharge. Wait two minutes (discharge time of the capacitors) after shut-down			
Additional earth connection			

1.3 Qualified personnel

IMPORTANT INFORMATION

All work related to transport, installation and commissioning as well as maintenance must only be carried out by **qualified personnel** (comply with IEC 364 or CENELEC HD 384 or DIN VDE 0100 and IEC 664 or DIN VDE 0110 and national accident prevention regulations).

Qualified personnel in the meaning of these operating instructions are electricians who are familiar with the installation, assembly, commissioning and operation of the frequency converter and the related dangers. On account of their technical training they are further familiar with the relevant standards and regulations.

1.4 Intended use

f

IMPORTANT INFORMATION

The frequency converter VAU is a device for speed control in three-phase rotary current motors.
 The frequency converter can be integrated in the motor (with the standard adapter plate) or fitted close to the motor (with the wall installation adapter plate).

> Frequency converters are components intended for installation in electrical systems or machinery.

> This frequency converter has not been approved for operation in explosive areas!

▷ When installed in machinery the commissioning of the frequency converters (i.e. commencing their intended use) is prohibited until it has been established that the machine meets the provisions of the Machinery Directive applicable at the time of commissioning, incl. the EMC Directive; EN60204 must be complied with.

 \triangleright The harmonised standards of DIN EN 50178; VDE 0160:1998-04 must be applied to this frequency converter in conjunction with DIN EN 60439-1; VDE 0660-500:2005-01.

▷ The frequency converters meet the requirements of the EC Machinery Directive 2006/42/EC.

 \triangleright The technical data and information on the connection conditions can be found on the rating plate and in these instructions and must always be adhered to.

▷ Repairs may only be carried out by authorised repair centres. Independent and unauthorised interventions may result in death, injury or property damage. This invalidates the warranty by Gebrüder BECKER GmbH.

External mechanical loads, such as stepping onto the housing, are not permitted!

IMPORTANT INFORMATION

Using frequency converters in movable equipment amounts to an unusual ambient condition and is only permitted in accordance with the locally applicable standards and guidelines.

1.5 Responsibility

Electronic devices are not generally fail-safe. The installer and/or operator of the machine or plant is responsible for ensuring that the drive switches to a safe state if the device fails.

www.becker-international.com

The "Electrical equipment of machines" section in DIN EN 60204-1; VDE 0113-1:2007-06, "Safety of machinery" describes the safety requirements for electrical control units. These are provided for the safety of people and machines and must be observed in order to retain the functional capability of the machine or plant.

.

An emergency stop feature does not necessary cause the power supply to the drive to be switched off. To avoid dangerous situations, it may be useful for individual drives to remain operational or for specific safety procedures to be initiated. The effectiveness of emergency stop measures is evaluated by means of a risk assessment for the machine or plant and its electrical equipment and is determined by selecting a circuit category according to DIN EN 13849 "Safety of machinery – Safety-related parts of control systems".

1.6 CE marking

The CE marking confirms that the frequency converters meet the basic requirements of the following Directives:

- ▷ Directive on Electromagnetic Compatibility (Directive 2004/108/EC of the Council EN 61800-3:2004).
- ▷Low Voltage Directive (Directive 2006/95/EC of the Council EN 61800-5-1:2003).

1.7 Safety information

The following warnings, precautionary measures and information are provided for your safety and serve to prevent damage to the frequency converter and the components connected to it. This chapter contains warnings and information which apply in general to the handling of frequency converters. They are divided into general information, transport & storage and disassembly & disposal.

Specific warnings and comments which apply to specific activities can be found at the start of the appropriate chapters and are repeated or added to at various critical points in these chapters.

Please read this information carefully as it is provided for your personal safety and will also prolong the life of the frequency converter and connected devices.

1.7.1 General information

IMPORTANT INFORMATION

Carefully read these operating instructions and the warning signs affixed to the frequency converter prior to installation and commissioning. Make sure that all warning signs affixed to the frequency converter are legible; replace any missing or damaged signs.

They contain important information on the installation and operation of the frequency converter. In particular, note the information under "Important information". Gebrüder BECKER GmbH assumes no liability for damages arising from the non-compliance with these operating instructions.

These operating instructions form an integral part of the product. They apply exclusively to the frequency converters of the VAU series from Gebrüder BECKER GmbH.

Keep the operating instructions near the frequency converter to be easily accessible to all users.

The frequency converter can only be operated safely if the required ambient conditions found in chapter 3.2.1 have been met.

Mortal danger from fire or electric shock!

Death or serious injury!

Always use the frequency converter as intended.

Do not modify the frequency converter.

Only use spare parts and accessories sold or recommended by the manufacturer.

During assembly, ensure adequate distance to adjacent components.

Risk of burns from hot surfaces!

Serious skin burns from hot surfaces!

The heat sinks and all other metal components may heat up to temperatures exceeding 70°C.

During assembly adequate distance must be maintained to adjacent components.

When working on the components provide for an adequate cooling-down period.

If necessary, install protection against accidental contact.

1.7.2 Transport and storage

Damage to property possible

Risk of damage to the frequency converter!

Risk of damage to the frequency converter from improper transport, storage, installation and assembly!

Transport the frequency converter properly in its original packaging.

Always store the frequency converter properly.

Only allow qualified personnel to carry out installation and assembly.

1.7.3 Notes for commissioning

Electrical connection

Frequency converters are equipment to be used in industrial high voltage systems and are operated with voltages which can cause serious injury or death upon contact.

Installation and work may only be carried out by **qualified electricians** with the <u>equipment disconnected from the voltage supply</u>. These individuals must always have access to the operating instructions which they must consistently adhere to.

Mortal danger from to electric shock!

Death or serious injury!

Disconnect the frequency converter from the voltage supply and protect it against re-activation.

The following terminals may still carry dangerous currents even when the motor is not running:

- Supply terminals X1: L1, L2, L3
- Motor connection terminals X2: U, V, W
- Connection terminals X6, X7: Relay contacts for relays 1 and 2
- PTC/bimetallic switch connection terminals T1/ T2

f

IMPORTANT INFORMATION

- ▷ When working on live frequency converters, the applicable national accident prevention regulations (e.g. VBG 4) must be complied with.
- > The local regulations pertaining to the installation of electrical systems and accident prevention regulations must be complied with.
- ▷ The electrical installation must be carried out in accordance with the relevant regulations (e.g. conductor cross sections, fuse protection, protective earth connection).
- If personal and fire protection are required during the use of the frequency converter, all-current sensitive RCDs of type B must be used (in accordance with DIN VDE 0160 and EN 50178). These provide reliable protection for the high frequency alternating currents and smooth and pulsating DC fault currents arising during frequency converter operation. Standard RCD devices of type A are not permitted.
- ▷ Only use permanently wired mains connections.
- ▷ Earth the frequency converter in accordance with DIN EN 61140; VDE 0140-1.
- Contact currents > 3.5 mA may occur in the VAU. In this case an additional protective earth conductor with the same cross section as the original earth conductor must be fitted In accordance with DIN EN 61800-5-1. The respective equipment instructions will provide information as to whether the equipment requires additional earthing. A second protective earth conductor can be connected below the mains supply (position marked with a mass symbol) on the outside of the device. A suitable M6x15 screw (4.0 Nm torque) is provided with the adapter plate.
- If different voltages levels are used (e.g. +24 V/230 V), crossing cable runs are not permitted under any circumstances! The operator must also ensure compliance with the applicable regulations (e.g. double or reinforced insulation according to DIN EN 61800-5-1)!
- The circuit boards contain highly sensitive MOS semiconductor elements which are particularly sensitive to static electricity. Conductor paths or components must therefore not be touched by hand or with metal objects. Only the screws of the terminal strips may be touched with insulated screwdrivers when connecting the cables.
- ▷ In a residential environment, this product can cause high-frequency interferences which might necessitate interference suppression measures!
- Information on EMC-compliant installation, such as shielding, earthing and cable routing, can be found in the documentation of the frequency converters. This information must always be complied with, even for frequency converters bearing the CE mark. The compliance with the limits required by EMC legislation is the responsibility of the plant or machine manufacturer.

1.7.4 Notes for operation

Mortal danger from electric shock!

Death or serious injury!

Due to its charged capacitors, the equipment might still carry <u>dangerous voltages for up to 2</u> <u>minutes</u> after being disconnected from the mains.

Contact with bare or unused terminals, conductors or equipment components may result in serious injury or death!

Therefore, the equipment may only be opened or the covers or control unit removed 2 minutes after the equipment has been disconnected from the mains.

Even with the motor at rest (e.g. due to electronic lock, blocked drive or short-circuited output terminals) the mains supply terminals, motor terminals and terminals for the brake resistance might <u>carry dangerous voltages</u>. A stopped motor does <u>not</u> imply electrical separation from the mains.

Mortal danger from revolving mechanical parts!

Death or serious injury!

With certain configurations the converter may start automatically after activation from the mains.

Systems integrated into the frequency converters might need to be equipped with additional monitoring and protection devices in accordance with the respective applicable safety regulations, e.g. laws relating to technical operating equipment, accident prevention regulations etc.

Unauthorised removal of the required covers, improper use and incorrect installation or operation pose risk of serious injury or property damage.

All covers must remain closed during operation.

IMPORTANT INFORMATION

Observe the following instructions during operation:

- > The frequency converter operates with high voltages.
- > During the operation of electrical equipment, some of their parts are inevitably carrying dangerous voltages.
- Emergency stop devices according to DIN EN 60204-1; VDE 0113-1:2007-06 must remain operational during all operating modes of the control unit. Resetting the emergency stop devices must not lead to uncontrolled or undefined reactivation.
- > To ensure safe disconnection from the mains, the mains cable must be completely disconnected from the frequency converter in a synchronous manner at all poles.
- \triangleright For VAU 11-22/3 a pause of at least 1 to 2 min. must be observed between successive mains activations.
- > Certain parameter settings may result in the frequency converter restarting automatically after a supply voltage failure.

Damage to property possible

If this information is not observed, the frequency converter could be damaged and destroyed during subsequent commissioning!

Observe the following instructions during operation:

- > The motor parameters, especially the I2T settings, must be configured correctly to provide proper motor overload protection.
- > The frequency converter features an internal motor overload protection. Motor overload protection can also be ensured via an external PTC/bimetallic switch.
- ▷ The frequency converter must not be used as an "emergency stop device" (see DIN EN 60204-1; VDE 0113-1:2007-06).

1.7.5 Maintenance and inspection

Frequency converters may only be maintained and inspected by trained electricians. Unless explicitly stated in these instructions, modifications of hardware and software may only be carried out by persons authorised by Gebrüder BECKER GmbH.

1.7.5.1 Cleaning of frequency converters

Frequency converters are maintenance-free if operated as intended. If the air contains dust, the cooling fins of the motor and frequency converter must be cleaned regularly.

1.7.5.2 Measuring the insulation resistance at the control terminals

An insulation test on the control board's input terminals is not permitted.

1.7.5.3 Measuring the insulation resistance at the power terminals

The power component of the VAU is tested with 1.9 kV during series testing.

Should the insulation resistance need to be measured during a system test, this can be done under the following conditions:

- \triangleright An insulation test may only be carried out for the power component.
- To avoid excessively high voltages, all the connection cables of the VAU must be disconnected before testing,
- \triangleright A 500 V DC insulation tester should be used.

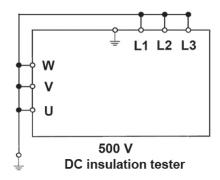


Fig. 4: Insulation test at the power component

1.7.5.4 Pressure test in a VAU

IMPORTANT INFORMATION

A pressure test is not permitted in a standard VAU.

1.7.6 Repairs

i

Damage to property possible

If this information is not observed, the frequency converter could be damaged and destroyed during subsequent commissioning!

▷ Repairs of the frequency converter may only be carried out by the Service department of Gebrüder BECKER GmbH.

Mortal danger from to electric shock!

Death or serious injury!

Disconnect the frequency converter from the voltage supply and protect it against re-activation.

Due to its charged capacitors, the equipment might still carry <u>dangerous voltages for up to 2</u> <u>minutes</u> after being disconnected from the mains.

Contact with bare or unused terminals, conductors or equipment components may result in serious injury or death!

Therefore, the equipment may only be opened or the covers or control unit removed 2 minutes after the equipment has been disconnected from the mains.

Related information signs affixed to the frequency converter must be observed.

Even with the motor at rest (e.g. due to electronic lock, blocked drive or short-circuited output terminals) the mains supply terminals, motor terminals and terminals for the brake resistance might <u>carry dangerous voltages</u>. A stopped motor does <u>not</u> imply electrical separation from the mains.

2 Frequency converter overview

2.1 Scope of delivery

Compare the scope of delivery of your product with that provided below.

.

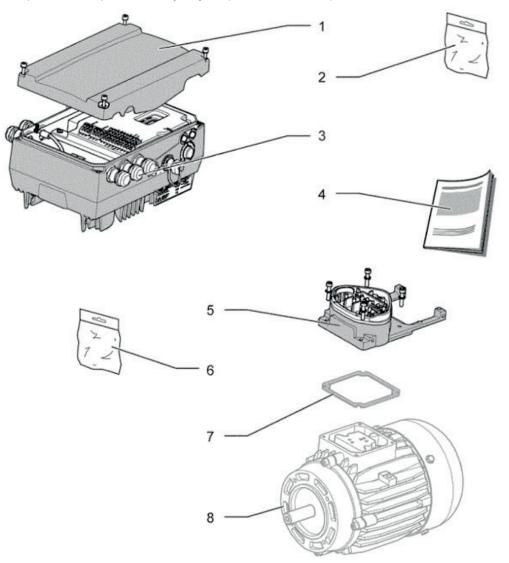


Fig. 5: Scope of delivery

Key	Кеу			
1	Frequency converter (version)	5	Adapter plate with connection terminal (optional)	
2	Poly bag containing fastening bolts	6	Poly bag containing connection material for terminal block (optional)	
3	Cable glands	7	Seal (optional)	
4	Operating instructions	8	Motor (not included in the scope of delivery)	

2.2 Description of frequency converter VAU

The frequency converter VAU is a device for speed control in three-phase rotary current motors.

The frequency converter can be integrated in the motor (with the standard adapter plate) or fitted close to the motor (with the wall installation adapter plate).

The permitted ambient temperatures specified in the technical data (chapter 8) refer to operation at nominal load.

3 Installation

3.1 Safety information for installation

Mortal danger from revolving mechanical parts!

Death or serious injury!

Disconnect the frequency converter from the voltage supply and protect it against re-activation.

Only allow installation by appropriately qualified personnel.

Only use personnel trained in assembly, installation, commissioning and operation.

Always earth the equipment in accordance with DIN EN 61140; VDE 0140, NEC and other relevant standards.

Mains connections must be permanently wired.

3.2 Installation requirements

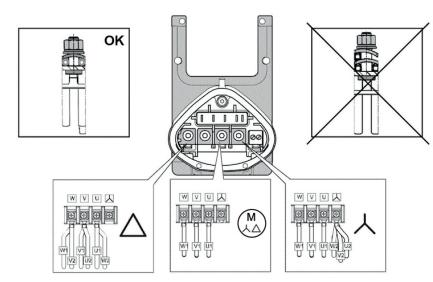
3.2.1 Suitable ambient conditions

Conditions	Values		
Altitude of the installation site:	up to 1000 m above MSL / more than 1000 m with reduced perfor- mance (1 % per 100 m) (max. 2000 m), see chapter 8.2		
Ambient temperature:	-25 °C to +50 °C (different ambient temperatures may be possible in individual cases), see chapter 8.2		
Relative humidity:	≤ 96%, condensation not permitted.		
Resistance to vibration and shock:	DIN EN 60068-2-6 severity 2 (vibration from transport)		
	DIN EN 60068-2-27 (vertical impact test)		
	2200 Hz for sinusoidal vibrations.		
Electromagnetic compatibility:	Immune to interference according to DIN EN 61800-3		
Cooling:	Surface cooling:		
	VAU 4/4 & VAU 7.5/3: free convection;		
	VAU 7.5/3: optionally with integrated fan;		
	VAU 11-22/3: with integrated fans.		
	Water cooling:		
	VAUw 7.5/3: with integrated water cooler		

Table 1: Ambient conditions

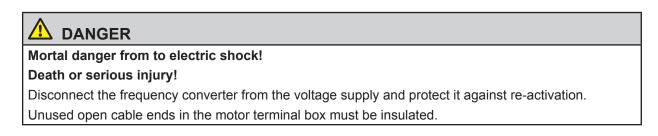
Ensure that the housing type (protection class) is suitable for the operating environment:

- Ensure that the seal between the motor and the adapter plate is inserted correctly.
- All unused cable glands must be sealed.
- Check that the cover of the frequency converter is closed and bolted down with the following torque: \triangleright VAU 4/4 & VAU 7.5/3 (4 x M4 x 28) 2 Nm,


▷ VAU 11-22/3 (4 x M6 x 28) 4 Nm.

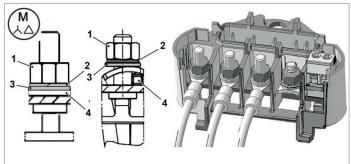
Damage to property possible

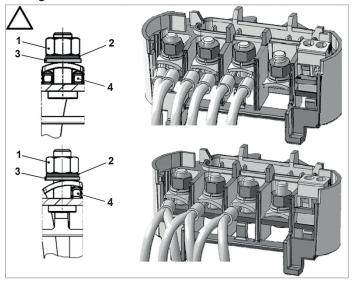
Non-compliance may result in the loss of the protection class over time (particularly in respect to seals and optical fibres).

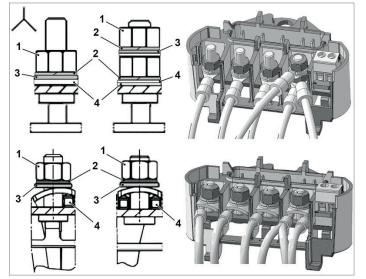

If circuit boards are being removed, the warranty is invalidated!

Mounting points and sealing surfaces must be kept free of paint for purposes of EMC and grounding!

3.2.2 Connection versions VAU 4/4 & VAU(w) 7.5/3


Fig. 6: Star or delta circuit for frequency converter integrated in the motor




Connection version with 3 conductors (star/delta circuit already established in the motor)

Triangle connection variant

Star connection variant

Кеу			
1	Nut MA = 5Nm	3	Plain washer
2	Circlip	4	Cable lug / wire end sleeve

www.becker-international.com

IMPORTANT INFORMATION

Regularly check that the nuts (1) are secure!

Damage to property possible

Risk of damage to the motor.

Correct phase assignment must be observed when connecting the frequency converter. Otherwise the motor may be overloaded.

The supplied assembly material can be used to connect both wire end sleeves and cable lugs. Fig. 6 shows the different connection options.

IMPORTANT INFORMATION

If the motor is fitted with a temperature sensor (PTC or bimetallic switch), this is connected to the T1 and T2 terminals (1).

Remove the bridging contact inserted for delivery purposes.

The cross section of the supply line must be designed according to the installation type and maximum permitted current. The contractor commissioning the device must ensure protection for the mains power line.

3.2.3 Connection version VAU 11-22/3

Mortal danger from to electric shock!

Death or serious injury!

Disconnect the frequency converter from the voltage supply and protect it against re-activation. Unused open cable ends in the motor terminal box must be insulated.

Connection version with 3 conductors (star/delta circuit already established in the motor)

IMPORTANT INFORMATION

If the motor is fitted with a temperature sensor (PTC or bimetallic switch), this is connected to the T1 and T2 terminals (1).

Remove the bridging contact inserted for delivery purposes.

The cross section of the supply line must be designed according to the installation type and maximum permitted current. The contractor commissioning the device must ensure protection for the power line.

.

3.2.4 Short circuit and earth leakage protection

The frequency converter contains an internal short circuit and earth leakage protection.

.

3.2.5 Cabling instructions

The frequency converter includes a terminal block with control connections.

Control terminals (all VAU series)

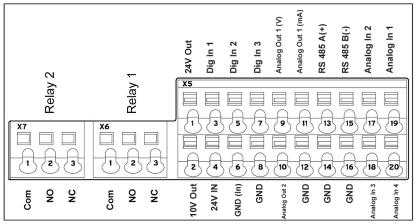


Fig. 7: Control terminals

	all VAU series					
(flat head screwdriver, max.		Plug-in terminal connection with actuation lever (flat head screwdriver, max. width 2.5 mm)				
		0.5 to 1.5 mm ² , single-wire, AWG 20 to AWG 14				
		0.75 to 1.5 mm ² , fine-wired, AWG 18 to AWG 14				
	Connection cross sec- tion:	0.5 to 1.0 mm ² , fine-wired (wire end sleeves with and without plastic collars)				
	Length of stripped in- sulation:	9 to 10 mm				

Table 2: Connection X5-X7

Power connections (VAU 4/4 & VAU(w) 7.5/3)

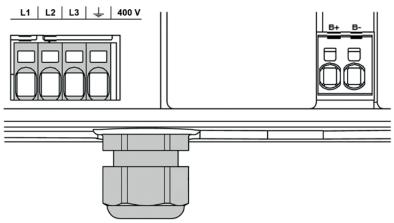


Fig. 8: Power connections 1

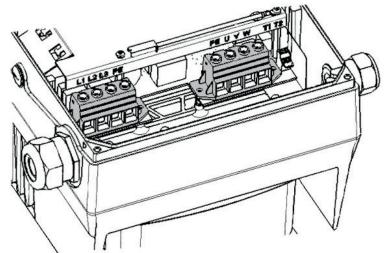

	VAU 4/4 & VAU(w) 7.5/3				
X1 mains B+ B- brake resistance	The terminals for the supply cable are located inside the frequency converter. The VAU is equipped with terminals for connecting a brake resistor. The configuration may vary depending on the version.				
	Wire end sleeves with plastic collars and lugs are recommended.				
	Terminals:	Spring force connection (flat head screwdriver, max. width 2.5 mm)			
	Conductor cross section, rigid	min. 0.2 mm² max. 10 mm²			
	Conductor cross section, flexible	min. 0.2 mm² max. 6 mm²			
	Conductor cross section, flexible with wire end sleeve without plastic collar	min. 0.25 mm² max. 6 mm²			
	Conductor cross section, flexible with wire end sleeve with plastic collar	min. 0.25 mm² max. 4 mm²			
		min. 0.25 mm² max. 1.5 mm²			
	Conductor cross section AWG/kcmil	min. 24 max. 8			
	Length of stripped insulation:	15 mm			
	Mounting temperature:	-5°C to +100°C			

Table 3: Connection X1 (VAU 4/4 & VAU(w) 7.5/3)

Power connections (VAU 11-22/3)

1 C C C

Fig. 9: Power connections 2

	VAU 11-22/3			
X1 mains / X4 motor	The terminals for the supply cable are located inside the frequency converter. The con- figuration may vary depending on the version.			
	Wire end sleeves with plastic collars and I	ugs are recommended.		
	Torque min. 2.5 Nm / max. 4.5 Nm			
	Conductor cross section:	rigid min. 0.5 mm ² / rigid max. 35 mm ²		
	Conductor cross section, flexible:	min. 0.5 mm ² / max. 25 mm ²		
	Conductor cross section, flexible with wire	min. 1 mm²		
	end sleeves with plastic collar	max. 25 mm ²		
	Conductor cross section, flexible with wire	min. 1.5 mm²		
	end sleeves with plastic collar	max. 25 mm²		
	Conductor cross section AWG / kcmil	min 20		
		max. 2		
	2 conductors of identical cross section,	min. 0.5 mm²		
	rigid	max. 6 mm²		
	2 conductors of identical cross section,	min. 0.5 mm²		
	flexible	max. 6 mm²		
	2 conductors of identical cross section,	min. 0.5 mm²		
	flexible with AEH without plastic collar	max. 4 mm²		
	2 conductors of identical cross section,	min. 0.5 mm²		
	flexible with TWINAEH with plastic collar	max. 6 mm²		
	Length of stripped insulation:	18 mm		
	AWG according to UL/CUL	min. 20		
		max. 2		

Table 4: Connection X1 and X4 (VAU 11-22/3)

3.2.6 Avoidance of electromagnetic interferences

Where possible use shielded cables for control circuits.

The shielding should be applied to the cable end with special care and without laying the wires across longer sections without shielding.

Ensure that no parasitic currents (compensating currents etc.) can flow across the shielding of the the analogue cable.

Route the control cables as far away as possible from the power cables. If necessary, separate power ducts should be used.

If cables do cross, an angle of 90° should be observed.

Upstream circuit elements, such as contactors and brake coils, or circuit elements operated via the outputs of the frequency converter must feature interference suppression. RC circuits are recommended for AC contactors. For DC contactors, free-wheeling diodes or varistors are usually used. These interference suppression devices are fitted directly to the contactor coils.

IMPORTANT INFORMATION

The power supply to a mechanical brake should be routed in a separate cable where possible.

Power connections between the frequency converter and motor should always be of shielded or reinforced design. The shielding must have large-area earthing at both ends! The use of EMC cable glands is recommended. These are not part of the scope of delivery.

Wiring suitable for EMC must generally be ensured.

3.3 Installation of a frequency converter integrated into the motor

- 3.3.1 Mechanical installation
- 3.3.1.1 Mechanical installation of the VAU 4/4 & VAU(w) 7.5/3

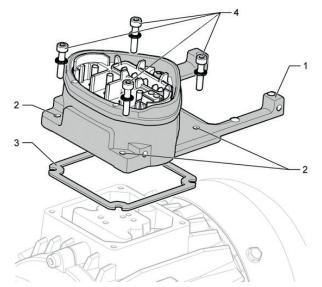


Fig. 10: Assembly sequence: Terminal box – adapter plate (VAU 4/4 & VAU 7.5/3)

Кеу			
1	Adapter plate	3	Seal
2	Drill holes	4	Fastening bolts

Proceed as follows to mechanically install the frequency converter:

- 1. Fit the seal (3).
- 2. Feed the motor supply cable past the connection terminal through the adapter plate (1) and screw it to the motor with the four fastening screws (4) and four spring elements (torque: 2.0 Nm).

IMPORTANT INFORMATION

When mounting the adapter plates, ensure that all four bolts, including the spring elements, are tightened to the appropriate torque (2 Nm)!

All contact points must be free of dirt/paint, otherwise a correct protective conductor connection cannot be ensured!

3. Attach the motor wires in the correct circuit, see also Fig. 6. (torque: 5.0 Nm). We recommend using insulated M5 ring cable lugs with a connection cross section of 4 to 6 mm².

IMPORTANT INFORMATION

When installing the motor wires, ensure that all bolts on the terminal board are fitted with the nuts provided even if the star point is not connected!

4. If present, wire the connection cable of the motor PTC/Klixxon to the T1 and T2 terminals (1) (torque: 0.6 Nm).

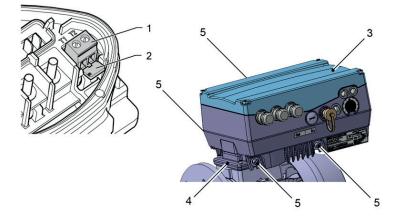


Fig. 11: Motor connection PTC/bimetallic switch

Key	Кеу			
1	Temperature sensor terminals	4	Adapter plate	
2	Bridge	5	Bolts	
3	Frequency converters			
	During assembly, ensure that the connection cables are not crushed!			
•	IMPORTANT INFORMATION			

If the motor is fitted with a temperature sensor, this is connected to the T1 and T2 terminals (1). Remove the bridging contact (2) inserted for delivery purposes.

When the bridge is in place, the motor temperature will not be monitored!

5. Plug the frequency converter (3) onto the adapter plate (4) and fasten it evenly using the four lateral bolts (5) (VAU 4/4 & VAU 7.5/3) (torque: 4.0 Nm).

.

3.3.1.2 Mechanical connection of the water cooling of the VAUw 7.5/3

Fig. 12: Cooling water connections VAUw 7.5/3

IMPORTANT INFORMATION

Integrate the cooler at the frequency converter into your cooling circuit.

To ensure adequate cooling, the following conditions must be met:

- \triangleright Coolant flow volume: 8l/ min
- \triangleright Line pressure (coolant): 3-5 bar
- ▷ Temperature (coolant): 10-40 °C

Damage to property possible

Risk of damage to the aluminium cooler!

Risk of damage from incorrect coolant (e.g. tap water)!

Only use coolants meeting the guidelines of WN472 by Gebrüder BECKER GmbH. We recommend a mixture of 65% deionised water and 35% Glysantin G48 (anti-freeze agent).

.

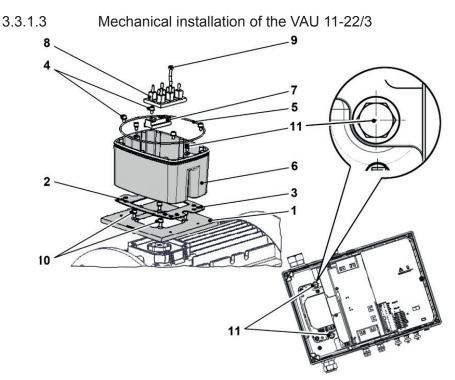


Fig. 13: Assembly sequence: Terminal box – adapter plate VAU 4/11-22/3

Key	/		
1	Adapter plate option (variant)	7	Junction plate heightening option
2	Holes depending on motor	8	Original terminal board (not included)
3	Seal	9	Extended screw option (for It.
4	Retaining bolts with spring elements	10	Retaining bolts with spring elements option
5	O-ring seal	11	VAU/support fastening bolts
6	VAU/adapter plate support		

.

IMPORTANT INFORMATION

Correct sealing between the adapter plate and motor is of vital importance to comply with the protection class.

This is the sole responsibility of the commissioning contractor.

Please direct any queries to your usual contacts for Gebrüder BECKER GmbH.

i

.

Proceed as follows to mechanically install the frequency converter:

- 1. Fit the seal (3).
- 2. Screw the adapter plate (1) on to the motor with the four fastening bolts (10) and four spring elements (torque: M4 to 2.4 Nm, M5 to 5.0 Nm, M6 to 8.5 Nm).

IMPORTANT INFORMATION

When mounting the adapter plate (1), ensure that all four fastening bolts (10), including the spring elements, are tightened to the appropriate torque!

All contact points must be free of dirt/paint, otherwise a correct protective conductor connection cannot be ensured!

- 3. Attach the original junction plate (8) to the motor, using the optional terminal board height adjustment (7) and the optional extended bolts (9) if necessary.
- 4. Connect the four cables (PE, U, V, W) with the corresponding cross section (depending on the rating of the VAU in use) to the original terminal board (8).

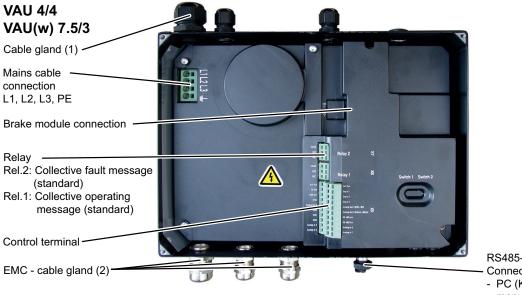
IMPORTANT INFORMATION

The connecting cables (approx. 30 cm) needed for the wiring of the motor terminal board/VAU are not included in the scope of delivery!

Please ensure that the seal (3) sits perfectly!

- 5. Screw the support (6) to the adapter plate (1) with four fastening bolts (4) incl. the spring elements (torque: 5.0 Nm).
- 6. Feed the four cables (PE, U, V, W) through the VAUS support.

IMPORTANT INFORMATION

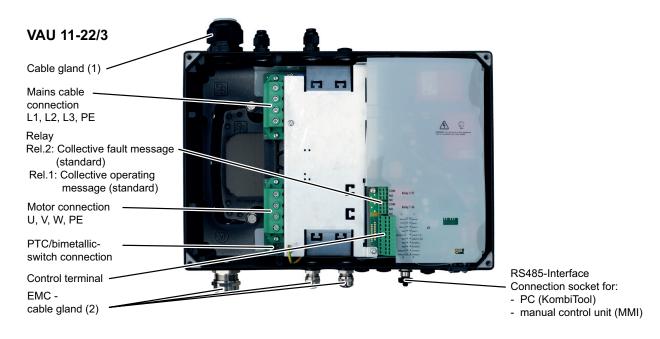

Please ensure that the O-ring seal (5) sits perfectly!

7. Carefully plug the frequency converter onto the support (6) and secure it evenly with two M8 bolts (11) (torque: max. 25.0 Nm).

3.3.2 Connection space

Ĭ

After opening the terminal box cover all connection terminals of the frequency converter can be found in the connection space.


RS485-interface Connection socket for: - PC (KombiTool)

- manual control unit (MMI)

. . . .

3.3.3 Power connection

- 3.3.3.1 Power connection of the VAU 4/4 & VAU(w) 7.5/3
 - 1. Unscrew the four bolts from the housing cover of the frequency converter and remove the cover.
 - 2. Detach the earthing cable from the housing cover in the process.
 - 3. Feed the mains supply cable through the cable gland (1).

i

IMPORTANT INFORMATION

The cable gland provides strain relief, and the PE connection cable must be connected in a leading fashion (considerably longer)!

4. Connect the cables to the terminals as follows:

	Terminals	Connection
L1L2L3 🛓	L1, L2, L3	Mains supply phase L1, L2, L3
	PE	Mains supply protective conductor PE

IMPORTANT INFORMATION

When connecting a brake resistance to an optional brake module, cables with shielding and double insulation must be used!

3.3.3.2 Power connection of the VAU 11-22/3

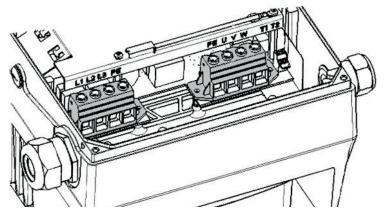


Fig. 16: Power connection (VAU 11-22/3)

1. Unscrew the four bolts from the housing cover of the frequency converter and remove the cover.

.

- 2. Detach the earthing cable from the housing cover in the process.
- 3. Guide the mains connection cable through the cable screw connection (1).

i IMPORT

IMPORTANT INFORMATION

The cable gland provides strain relief, and the PE connection cable must be connected in a leading fashion (considerably longer)!

4. Connect the cables with the terminals as follows:

400 V connection			
L1	L2	L3	PE

The protective conductor must be connected to the "PE" contact.

Terminal no.	Designation	Assignment
1	L1	Mains phase 1
2	L2	Mains phase 2
3	L3	Mains phase 3
4	PE	Protective conductor

Table 5: Mains connection assignment X1

Terminal no.	Designation	Assignment
1	PE	Protective conductor
2	U	Motor phase 1
3	V	Motor phase 2
4	W	Motor phase 3

Table 6: Motor connection assignment X4

3.3.4 Brake resistance connections (VAU 4.4 & VAU(w) 7.5/3 only)

Terminal no.	Designation	Assignment
1	B+	Connection for brake resistance (+)
2	В -	Connection for brake resistance (-)

Table 7: Connection assignment for brake resistance

.

3.3.5 Control connections

- 1. Feed the required control cable through the cable glands (2) into the housing.
- 2. Connect the control cables according to the figure and/or table. Use shielded control cables.
- 3. Place the cover onto the housing of the frequency converter and bolt it tight to the following torque:

Size.	Torque	
VAU 4/4 & VAU 7.5/3	2 Nm (4 x M4 x 28)	
VAU 11-22/3	4 Nm (4 x M6 x 28)	

Table 8: Tightening torques

Connection terminals of the <u>bottom row</u> of the double row terminal block:

	Terminal	Connection
	10V Out	Int. power supply
10 V Out	24V IN	ext. voltage supply
GND (In)	GND (In)	Mass (ext. voltage supply)
GND	GND	Ground
Analog Out 2 (0V10V)	Analogue Out 2 (0V10V)	analogue voltage output 2
GND	GND	Mass
GND	GND	Mass
GND Analog In 3	GND	Mass
Analog In 4	Analogue In 3	analogue input 3
	Analogue In 4	analogue input 4

Table 9: Connection assignment for control connections (bottom row)

Connection terminals of the <u>upper row</u> of the double row terminal block:

	Terminal	Connection
	24V Out	int. power supply
24V Out Dig In 1	Dig In 1	Digital input 1 - release (start/stop)
Dig In 2	Dig In 2	Digital input 2
Dig In 3	Dig In 3	Digital input 3
Analog Out 1 (0V*	Analogue Out 1 (0V10V)	analogue voltage output 1
Analog Out 1 (0mA RS 485 A(+)	A nalogue Out 1 (0mA20mA)	analogue current output 1
RS 485 B (-)	RS 485 A(+)	Serial RS485 interface cable A
Analog In 2 Analog In 1	RS 485 B(-)	Serial RS485 interface cable B
	Analogue In 2	analogue input 2
	Analogue In 1	analogue input 1

Table 10: Connection assignment for control connections (upper row)

.

3.3.6 Relays

Operation		Description			
The relays can be para	The relays can be parametrised with different functions (see chapter 5)				
Relay 2		Relay 1	Collective operating message (standard)		
	SBM	Device stopped:	COM - NC		
	NO COM		Device rotates with a speed > 0:	COM - NO	
	NC-T	Relay 2	Collective fault message (stand-		
		SSM	ard)	COM - NC	
NC Relay 1			Fault-free operation:	COM - NO	
			Fault:		

Table 11: Relay connection assignment

Damage to property possible

All control voltages are related to a common reference potential (GND).

24V can be picked up from the corresponding terminals.

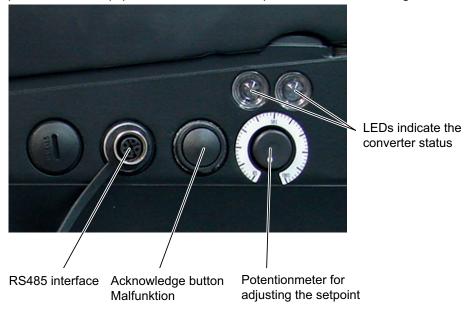
The current total must not exceed 100 mA (see chapter 8 - technical data).

3.3.7 RS485 interface

The RS485 interface is of two-wire design in accordance with EIA RS485 (data cables A and B) and enables the communication with the frequency converter.

The interface is networkable in accordance with the above-mentioned standard in a network of up to 31 nodes. The transmission rate and node address can be configured via corresponding parameters.

Connector assignment	M12	Description	4 3
M12:	1	24V	
	2	RS 485 A(+)	
	3	GND	
	4	RS 485 B(-)	
			Stift (Bus-In)


Table 12: Connector assignment M12

3.4 Local operation and display

The local operation of the equipment is via the control panel as shown in the figure.

Using the potentiometer the current setpoint can be increased or reduced with the aid of the scale. The acknowledgement key can be used to acknowledge a fault.

The two LEDs indicated the current converter state.

Table of the LED flash code	
-----------------------------	--

Red LED	Green LED	State			
0		Operation			
*		with optional BUS module:BUS operation (active BUS connection)			
•	*	Fault - for additional information see chapter 6.2			
*	*	with optional BUS module: BUS module is operational			
0	-	Initialisation			
Key: CED off, LED on, LED flashes, LED flashes rapidly					

Fault see

- \rightarrow chapter 6.2 Table of possible error messages
 - read **KombiTool** P1011...1014
- → Display of manual control unit (MMI)

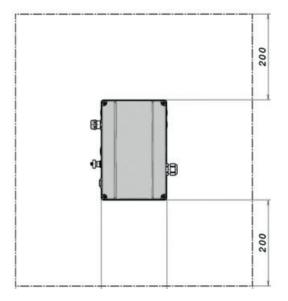
3.5 Optional accessories

The optionally available **manual control unit MMI** (order no.: 79630100115) is a diagnosis and service tool and used for the communication with the frequency converter.

It provides e.g. the following functions: Display/change of various parameters, error display (last 20) with error number and description, control (setpoint specification), saving, deleting and transferring parameter records.

www.becker-international.com

3.6 Installation of a wall-mounted frequency converter


3.6.1 Suitable installation location for wall mounting

Make sure that the installation location for wall mounting a VAU meets the following conditions:

- \triangleright The frequency converter must be mounted on a firm level surface.
- \triangleright The frequency converter may only be mounted on non-flammable surfaces.
- \triangleright There must be clearance of 200 mm around the frequency converter to ensure free convection.

The figure below shows the assembly dimensions and the required clearances for installing the frequency converter.

........

Fig. 17:

For the "wall mounting" version, the cable length between the motor and VAU must not exceed 5 m. Only use a shielded cable with the required cross section. A PE connection (below terminal board of the wall adapter) must be established.

- 3.6.2 Mechanical installation
 - 1. Open the motor connection box.

IMPORTANT INFORMATION

The cable gland provides strain relief, and the PE connection cable must be connected in a leading fashion (considerably longer)!

- 2. Use suitable EMC glands to connect the shielded motor cable to the motor connection box! Ensure that the shielding has sound (large area) contact!
- 3. Connect the prescribed PE connection in the motor connection box!
- 4. Close the motor connection box.

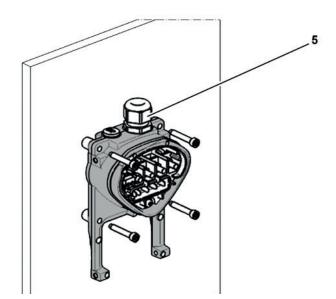
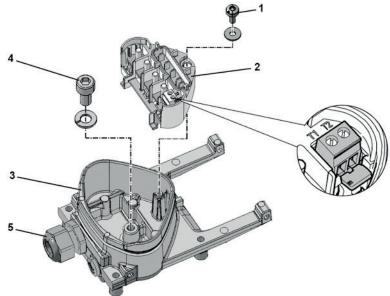


Fig. 18: Attaching the adapter plate to the wall


Key5Cable gland

1

IMPORTANT INFORMATION

The frequency converter may not be installed without an adapter plate!

- \triangleright Find a position which matches the required ambient conditions described in the chapter 3.2.
- > To achieve optimum self-convection of the frequency converter, ensure that the (EMC) gland (1) points upwards during installation.
- ▷ If there is no additional ventilation for the VAU (optional for size VAU 7.5/3), only vertical installation is permitted.

Кеу				
1	Bolt	4	PE connection	
2	Contact plate	5	Cable gland	
3	Adapter plate			

- 1. Release the screw (1) to remove the contact plate (2) from the adapter plate (3). The (M6x15) PE connection (4) is located below the contact plate.
- 2. Feed the connection cable from the motor through the integrated EMC gland (5) to the adapter plate (3).
- 3. This PE connection (torque: 4.0 Nm) must be connected with the same earth potential as the motor. The cross section of the equipotential bonding cable must correspond to at least the cross section of the mains supply cable.
- 4. Refit the contact plate (2) in the adapter plate (3).
- 5. Fasten the contact plate (2) using the bolt (1) (torque: 1.2 Nm).

INFORMATION

After fastening the contact plate (2), ensure that it is float-mounted.

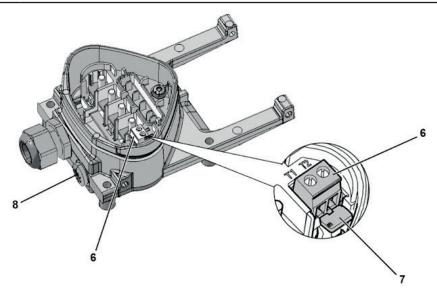


Fig. 20: Removal of the short circuit bridge

Кеу					
6	Temperature sensor terminals	8	Dummy gland		
7	Bridge				

- 6. Wire the motor cable to contacts U, V, W (and the star point in some cases) in the connection terminal as described in the chapter 3.2.2. Use cable lugs (M5) for the purpose.
- 7. Before connecting any existing motor PTC/bimetallic switch to the T1 and T2 terminals (6), remove the pre-assembled short-circuit bridge (7).

IMPORTANT INFORMATION

The motor PTC/bimetallic switch carries potential after connecting the VAU. It must therefore be connected using a separate cable insulated against the motor cable.

To this end replace the dummy gland (8) with a suitable standard gland and route both ends to T1 and T2 (6).

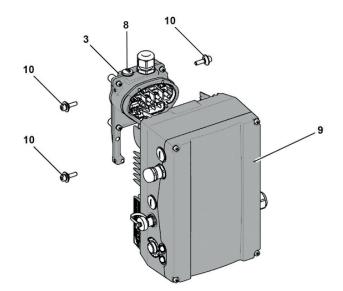


Fig. 21: Placing the frequency converter

Кеу				
3	Adapter plate	9	Frequency converters	
8	Dummy gland	10	Bolts	

- 8. Position the frequency converter (9) on the adapter plate (3) so that the collar of the adapter dips into the opening on the floor of the heat sink.
- 9. Attach the frequency converter (9) to the adapter plate (3) using the bolts (10) provided (torque: 4.0 Nm).

3.6.3 Power connection

The power connections are made as described in chapter 3.3.

3.6.4 Brake chopper

The brake connections are made as described in chapter 3.3.

3.6.5 Control connections

The control connections are made as described in chapter 3.3.

4. Commissioning

4.1 Safety information for commissioning

Damage to property possible

If this information is not observed, the frequency converter could be damaged and destroyed during subsequent commissioning!

Commissioning may only be performed by qualified personnel. Safety precautions and warnings must always be complied with.

Mortal danger from to electric shock!

Death or serious injury!

Make sure that the power supply provides the correct voltage and is designed for the required current.

Use suitable circuit breakers with the prescribed nominal current between the mains and the frequency converter.

Use suitable fuses with appropriate current values between the mains and frequency converter (see chapter 8).

The frequency converter must be earthed together with the motor in accordance with regulations. Noncompliance may result in serious injury.

4.2 General information

The converter is not equipped with a mains switch and is therefore always carrying voltage once connected to the mains supply.

If the voltage supply is connected to the converter, it is ready for operation

within a few moments. During this state the converter can be configured to the application requirements, i.e. parametrised.

In the delivery state the converter is already parametrised for the customer-specific application. If necessary, application-specific parameter records can be obtained from the respective responsible national agency (see chapter 10 Service).

A detailed description of each parameter is provided in chapter 5.

The motor may only be started via a release signal after the parameters have been configured by qualified personnel.

IMPORTANT INFORMATION

Some parameters only take effect after the mains voltage is re-activated. In this case the frequency converter must be disconnected from the power supply for at least 60 seconds.

With certain parameter settings it is possible that the device starts immediately after activating the mains voltage.

INFORMATION

Ť

The parametrisation of the frequency converter can also be carried out with only small voltages, e.g. before installing the frequency converter on the motor.

To this end the frequency converter features a 24 V small voltage input (terminal X5: 24 V IN & Ground IN) to supply the electronics without mains voltage needing to be connected. The converter indicates an error based on the missing mains voltage.

4.2.1 KombiTool

The KombiTool is the parametrisation and diagnosis software for the frequency converters approved by Gebrüder BECKER GmbH.

The communication between the computer and the frequency converter must take place via a suitable interface converter.

The KombiTool is not included in the scope of delivery but can be ordered if required. For further information please contact your responsible national agency.

4.3 Basic configuration

The supplied frequency converter has always been parametrised with a basic configuration.

This includes in particular all regulator settings and regulator characteristics, temperature, speed and other limit values and the basic electrical alignment between the frequency converter and motor.

It is therefore essential that the frequency converter is only operated with the device type for which it has been supplied. Otherwise please contact qualified service personnel.

4.3.1 Pressure/vacuum mode

For the equipment to operate correctly with the application, it must be configured accordingly whether the equipment operates in pressure or vacuum mode.

Some equipment types can only be operated as pressure or vacuum equipment, whereas in other equipment the application depends on the equipment connection port selected.

In both cases it must be ensured that the configured operating mode matches the actual application in order to prevent damage to the equipment.

The operating mode for the equipment is selected through corresponding parametrisation.

4.3.2 Operating mode

The operating mode largely determines the equipment behaviour in the application.

Unless specified differently by the user, the equipment is preconfigured for the operating mode of speedcontrolled operation.

This can be changed through corresponding parametrisation.

4.3.2.1 Speed-controlled operation

In speed-controlled operation the speed with which the equipment is to be operated is specified directly as a setpoint. The equipment indexes this speed and maintains it even if the operating point of the application changes.

4.3.2.2 Sensorless control (internal control)

With the sensorless control a process variable, e.g. pressure or vacuum, can be directly controlled without having to be measured by a sensor.

.

With correct parametrisation the frequency converter can calculate the process variable from internal variables and adjust them in line with the specified value.

For delivery the necessary characteristic parameters have already been configured in accordance with the equipment type used.

With pressure or vacuum control the (relative) pressure difference can be set directly as a positive value for either pressure or vacuum operation.

4.3.2.3 Process control (sensor-guided PID control)

For the process control a corresponding sensor must be connected to the analogue input.

The physical type of the process variable only depends on the type of sensor used.

The setpoint is specified as percentage value related to the maximum measuring value of the sensor used.

Caution: If an absolute pressure sensor is used for control in vacuum operation, the corresponding measured value might need to be inverted for correct control behaviour.

When using the process controller the control parameters might need to be adjusted to the behaviour of the controlled system if the control behaviour is not satisfactory using the preset values. The process controller has been designed as a PID controller.

4.3.3 Setpoint origin

The setpoint for the speed, the sensorless control or process control can be set in different ways, e.g. via an analogue input or the RS485 interface.

Which way is chosen for a specific application must be configured with the corresponding parameter for the main setpoint origin.

Unless specified differently by the user, the internal potentiometer is chosen as main setpoint origin.

4.3.4 Start/stop origin (release)

The release of the equipment for starting the ramp-up and for shut-down can also be issued in different ways (e.g. digital input or RS485 interface). Which way will be used is determined by the parameter of the start/stop origin.

Unless specified differently by the user, digital input 1 is configured as start/stop origin.

.

4.4 Block diagram

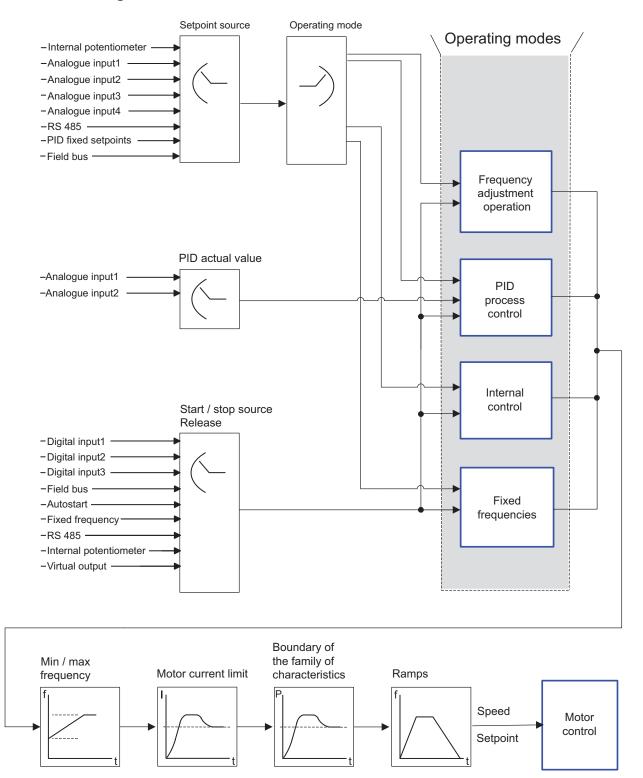
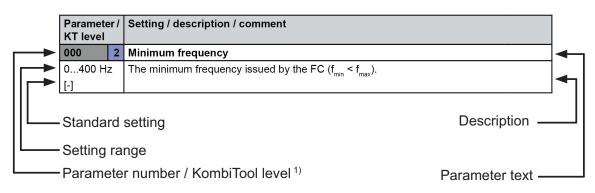


Fig. 22: General structure of target value generation



.

5 Parametrisation

Parameter availability

With access through different password levels different parameters are visible and can be parametrised via the KombiTool. The table below (chapter 5.1) lists all parameters.

¹⁾ KombiTool level (KT level)

Level 0 - Basic(basic parameters are displayed)Level 2 - Professional(customer parameters are displayed and can be modified)Level 3 - Professional Pro (all relevant parameters are displayed and can be modified)

5.1 Parameter description

The abbreviation FC will be used for the frequency converter below.

Parameter / KT level	Setting / description / comment
000 2	Minimum frequency
0400 Hz	The minimum frequency issued by the FC ($f_{min} < f_{max}$).
[-]	
001 2	Maximum frequency
5400 Hz	The maximum frequency issued by the FC ($f_{max} > f_{min}$).
[-]	
003/048 2	Braking time (brake ramp 1 / brake ramp 2)
0.11000 s	Time period from f _{max} (see P001) to stoppage
[-]	
004/049 2	Ramp-up time (acceleration ramp 1 / acceleration ramp 2)
0.11000 s	Time period from stoppage to f _{max} (see P001)
[-]	

Parameter /	Setting / description / comment
KT level	
005 2	Main setpoint origin
012	Determines the source from which the setpoint will be read.
[0]	0 = internal potentiometer
	1 = analogue input 1
	2 = analogue input 2
	3 = MMI
	4 = serial interface RS-485 (USS or SAS protocol)
	6 = motor potentiometer
	7= sum of analogue inputs 1 and 2
	8 = PID fixed value (see parameters P83 & P127-133)
	9 = field bus
	10 = analogue input 3
	11 = analogue input 4
	12 = PLC (internal)
006 2	Actual value origin for sensor-guided PID control
02	Selection of the input source from which the actual value for the PID process controller is
[0]	imported:
	0 = analogue input 1
	1 = analogue input 2
	2 = PLC (internal)
007 2	Main start/stop origin ➡ for release
014	Selection of the source for SW release.
014	Selection of the source for SW release.
014	Selection of the source for SW release. 0 = digital input 1
014	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2
014	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3
014	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal)
014	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1
014	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1 5 = analogue input 2
014	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1 5 = analogue input 2 6 = field bus
014	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1 5 = analogue input 2 6 = field bus 7 = serial interface RS-485 (USS or SAS protocol)
014	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1 5 = analogue input 2 6 = field bus 7 = serial interface RS-485 (USS or SAS protocol) 9 = autostart
014	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1 5 = analogue input 2 6 = field bus 7 = serial interface RS-485 (USS or SAS protocol) 9 = autostart 10 = fixed frequency release
014	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1 5 = analogue input 2 6 = field bus 7 = serial interface RS-485 (USS or SAS protocol) 9 = autostart 10 = fixed frequency release 11 = internal potentiometer 0% Off / > 0.5% On
014	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1 5 = analogue input 2 6 = field bus 7 = serial interface RS-485 (USS or SAS protocol) 9 = autostart 10 = fixed frequency release 11 = internal potentiometer 0% Off / > 0.5% On 13 = MMI
014 [0]	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1 5 = analogue input 2 6 = field bus 7 = serial interface RS-485 (USS or SAS protocol) 9 = autostart 10 = fixed frequency release 11 = internal potentiometer 0% Off / > 0.5% On 13 = MMI 14 = virtual output
014 [0] 008 2	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1 5 = analogue input 2 6 = field bus 7 = serial interface RS-485 (USS or SAS protocol) 9 = autostart 10 = fixed frequency release 11 = internal potentiometer 0% Off / > 0.5% On 13 = MMI 14 = virtual output Operating mode
014 [0] 008 2 05	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1 5 = analogue input 2 6 = field bus 7 = serial interface RS-485 (USS or SAS protocol) 9 = autostart 10 = fixed frequency release 11 = internal potentiometer 0% Off / > 0.5% On 13 = MMI 14 = virtual output Operating mode Selection of the operating mode
014 [0] 008 2 05	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1 5 = analogue input 2 6 = field bus 7 = serial interface RS-485 (USS or SAS protocol) 9 = autostart 10 = fixed frequency release 11 = internal potentiometer 0% Off / > 0.5% On 13 = MMI 14 = virtual output Operating mode Selection of the operating mode 0 = speed-controlled operation
014 [0] 008 2 05	Selection of the source for SW release. 0 = digital input 1 1 = digital input 2 2 = digital input 3 3 = PLC (internal) 4 = analogue input 1 5 = analogue input 2 6 = field bus 7 = serial interface RS-485 (USS or SAS protocol) 9 = autostart 10 = fixed frequency release 11 = internal potentiometer 0% Off / > 0.5% On 13 = MMI 14 = virtual output Operating mode Selection of the operating mode 0 = speed-controlled operation 1 = sensor-guided PID controller

Parameter /	Setting / description / comment
KT level	
009/010 2	Fixed frequency 17 ➡ P008
011/012	
013/014	
015	
0400 Hz	The fixed frequency is set dependent on the switching pattern at the digital inputs $1 - 3$.
[0]	This mode must be selected in parameter 008.
	Change to fixed frequency via digital inputs:
	DigIN. 1 → Fixed frequency 1: P009
	DigIN. 2 → Fixed frequency 2: P010
	DigIN. 1 & DigIN. 2 ➡ Fixed frequency 3: P011
	DigIN. 3 ➡ Fixed frequency 4: P012
	DigIN. 3 & DigIN. 1 ➡ Fixed frequency 5: P013
	DigIN. 3 & DigIN. 2 ➡ Fixed frequency 6: P014
	DigIN. 3 & DigIN. 2 & DigIN. 1 ➡ Fixed frequency 7: P015
022/031 2	Filter time (analogue input 1 / analogue input 2)
0.021.00	Time constant in seconds for input filter
S	
[0.02]	
023/032 2	Backlash (analogue input 1 / analogue input 2)
0100 %	Backlash as percentage of the final range value
[0]	
025/034 2	Input type (analogue input 1 / analogue input 2)
1; 2	Change of the analogue input between voltage or current input:
[1]	1: Voltage input;
	2: Current input
026/035 2	% min. value (analogue input 1 / analogue input 2)
0100 %	Defines the minimum value of the analogue input as percentage of the final range value:
[0]	Example: 010V or 020mA ➡ 0%100%
	210V or 420mA ➡ 20%100%
027/036 2	% max. value (analogue input 1 / analogue input 2)
0100 %	Defines the maximum value of the analogue input as percentage of the final range value:
[0]	Example: 010V or 020mA ➡ 0%100%
	210V or 420mA ➡ 20%100%
037 2	PID controller (KP: P share)
0100	Proportional amplification of the PID controller
[1]	
038 2	PID controller (KI: I share)
0100 1/s	Amplification factor of the integral share of the PID controller
[1]	
039 2	PID controller (KD: D share)
0100 s	Amplification factor of the differential share of the PID controller
[0]	

Parameter / KT level	Setting / description / comment
042/162 2	Function (analogue output 1 / analogue output 2)
054	Signal selection at the analogue output:
[5]	0= signal is specified by the PLC (internal)
	1 = U_d (intermediate circuit voltage)
	$2 = U_N$ (mains voltage)
	$3 = U_{Motor}$ (motor voltage)
	$4 = I_{Motor}$ (motor current)
	$5 = f_{ACT}$ (ACTUAL frequency)
	8 = IGBT temperature
	9 = inside temperature
	10 = analogue input 1
	11 = analogue input 2
	$12 = f_{TARGET} (TARGET frequency)$
	50 = P_d (intermediate circuit power)
	51 = analogue input 3
	52 = analogue input 4
	53 = value from BECKERfunction
	54 = dp _{ACT} (calculated ACTUAL pressure)
043/163 2	Minimum value (analogue output 1 / analogue output 2)⇒ P080⇒ P164
-10000	Minimum value related to the selected process variable displayed at the analogue output
10000	as 0V (or 4mA).
[0]	Example: 0 10V (min ValueAOut maxValueAOut)
050 2	Ramp selection
06	Ramp selection:
[0]	0 = brake ramp 1 and acceleration ramp 1
	1 = brake ramp 2 and acceleration ramp 2
	2 = selection via digital input 1
	3 = selection via digital input 2
	4 = selection via digital input 3
	5 = selection via PLC (internal)
	6 = virtual output
	The following applies to the selection via digital inputs:
	0 signal corresponds to brake ramp 1 and acceleration ramp 1
	1 signal corresponds to brake ramp 2 and acceleration ramp 2
051 3	MOP step range ⇒ P141
	Ctop repair of the motor potentiameter on percentage related to f (MANY fragmeness)
0100 %	Step range of the motor potentiometer as percentage related to f_{max} (MAX frequency).

Parameter /	Setting / description / comment
KT level	
053 2	Acknowledgement function
03	Selection of the source for fault acknowledgement:
[0]	Note: Acknowledgement via button at the frequency converter is always possible
	0 = no acknowledgement via digital input
	1 = digital input 1
	2 = digital input 2
	3 = digital input 3
054 2	Automatic acknowledgement (automatic restart after fault)> P109
01000 s	Activation of automatic acknowledgement
[0]	0 = no automatic acknowledgement
	1-1000 = time (in seconds) after which the fault is automatically reset
062/065 2	Function (relay 1 / relay 2)
059	Selection of the process variable which causes the relay to be switched on or off if the limit
[19 / 10]	value is exceeded or fallen below:
	$1 = U_d$ (intermediate circuit voltage)
	$2 = U_N$ (mains voltage)
	$3 = U_{Motor}$ (motor voltage)
	$4 = I_{Motor}$ (motor current)
	$5 = f_{ACT} (ACTUAL frequency)$
	8 = IGBT temperature
	9 = inside temperature
	10 = fault (switches ON during fault) collective fault message
	11 = inverted fault (switches OFF during fault)
	13 = digital IN 1
	14 = digital IN 2
	15 = digital IN 3
	18 = ready
	19 = operation (switches ON if speed > 0) collective operating message
	50 = current limit active
	51 = target frequency reached
	52 = target value cannot be reached (control deviation)
	53 = analogue IN 1 > limit value 1 ➡ (relay 1: P63 / P64 relay 2: P66 / P67)
	54 = analogue IN 2 > limit value 2 ➡ (relay 1: P165 / P166 relay 2: P171 / P172)
	55 = analogue IN 3 > limit value 3 ➡ (relay 1: P167 / P168 relay 2: P173 / P174)
	56 = analogue IN 4 > limit value 4 ➡ (relay 1: P169 / P170 relay 2: P175 / P176)
	57 = function 53, 54, 55 or 56 active
	58 = fault or function 57 active
000/000	59 = output limit active (temperature protection)
063/066 2	Activation threshold (relay 1 / relay 2)
010000	Activation threshold related to the selected process variable for relay function 1, 2, 3, 4, 5, 8, 9, 53 (value specified in physical units: $A_{1}V_{1}Hz^{2}C$)
[0]	8, 9, 53 (value specified in physical units: A, V, Hz, °C)

Parameter /	Setting / description / comment
KT level	
064/067 2	Shut-down threshold (relay 1 / relay 2)
010000 [0]	Shut-down threshold related to the selected process variable for relay function 1, 2, 3, 4, 5, 8, 9, 53 (value specified in physical units: A, V, Hz, °C)
068 2	IGBT fan temperature
40200 °C [60]	IGBT temperature threshold °C for fan activation.
069 2	Internal temperature ON activation threshold for fan
40200 °C	Internal temperature threshold °C for fan activation.
[60]	
070/071 2	Technology parameters 1 / 2 / 3 / 4 / 5
072/073	
074	
-32768 32768	separately documented dependent on firmware version
[0]	
075/076 3	Technology parameters 6 / 7 / 8 / 9 / 10
077/078	
079	
-32768	separately documented dependent on firmware version
32768	
[0]	
080/164 2	Maximum value (analogue output 1 / analogue output 2)
-10000 10,000	Maximum value related to the selected process variable displayed at the analogue output as 10V (or 20mA).
[-]	Example: 010V (minValueAOut maxValueAOut)
081 2	Start protection P007
08	Selection of the start-up behaviour with SW release parameter 007:
[0]	0 = immediate start with high signal at start input of controller release
	1 = start only with rising flank at start input of controller release (re-activation protection)
	2 = digital input 1 activates this function
	3 = digital input 2 activates this function 4 = digital input 3 activates this function
	6 = PLC (internal)
	7 = analogue input 1
	8 = analogue input 2
082 2	PID inverted
0; 1	Inverts the actual value of the PID process controller:
[0]	(important for absolute pressure sensor in vacuum range)
	0 = not inverted
	1 = PID ACTUAL value is inverted

Parameter / KT level	r/ Setting / description / comment	
083 2	2 PID fixed setpoint	➡ P005
0100 %	Fixed setpoint specification for the PID process controller	
[0]	must be selected in P005 (8 = PID fixed setpoint)	
084 2	2 PID standby time	
01000 s	Waiting period till the standby function is activated	
[0]		
085 2	2 PID standby hysteresis	
050 %	Condition for waking up the PID controller from the stand-by function.	·
[0]	(control difference greater than set value)	
086 2	2 Motor current limit (% value of the nominal motor current)	·
0250 %	If this limit is exceeded, the speed is reduced	
[-]		
087 2	2 Motor current limit (time during which overcurrent is permissible)	
0100 s	If this limit is exceeded, the speed is reduced	·
[-]		
094/096 2	2 Energizing delay (relay 1 and 2)	
099 s		
[1]		
095/097 2	2 De-energizing delay (relay 1 and 2)	
099 s		
[1]		
098 0	0 USS/SAS address	
031	Device address for USS/SAS bus operation	
[0]		
099 2	2 Field bus address	
031	when using the optional field bus module, e.g. CANOpen	
[0]		
100 2	2 Field bus baud rate	
08	0 = 9600, CanOpen	
[2]	1 = 19200, 0 = 1MBit,	
	2 = 38400, 1 = 800kBit,	
	3 = 57600, $2 = 500$ kBit,	
	4 = 115200; 3 = 250kBit,	
	4 = 125kBit,	
	5 = 100kBit,	
	6 = 50kBit,	
	7 = 20kBit,	
	8 = 10kBit	

Parameter / KT level	Setting / description / comment
102 0	Bus timeout (USS timeout)
0100 s [0]	Maximum time between two USS telegrams (RS485) / BUS timeout in seconds. If the main setpoint origin (P005) and/or the main start/stop origin (P007) have been set to RS485 and a value greater than 0 has been entered, the frequency converter expects a telegram at the RS485 interface in a time interval not exceeding the specified value or it changes to a fault state. If a value of 0 is entered, the telegram traffic will not be monitored.
109 2	Automatic acknowledgement (numbers) P054
0500 [0] 110 0	 The maximum number of automatic acknowledgements can be selected. ● 0 means unlimited automatic acknowledgements possible USS /SAS baud rate (RS485 interface)
03	0 = 9600 baud,
[0]	1 = 19200 baud, 2 = 38400 baud, 3 = 57600 baud
112/113 2	Process data out 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10
114/ 115 116/ 117 118/ 119	
049	Actual bus value no. 3 ➡ see process value table (actual values)
[-]	Actual bus value no. 4
	Actual bus value no. 5
	Actual bus value no. 6
	Actual bus value no. 7
	Actual bus value no. 8
	Actual bus value no. 9
	Actual bus value no. 10
120/121 2 122	Inversion (digital input 1 / digital input 2/ digital input 3)
0; 1	Inversion of digital input 1 ➡ 0 is not inverted, 1 is inverted
[0]	Inversion of digital input 2 ➡ 0 is not inverted, 1 is inverted
	Inversion of digital input 3 ➡ 0 is not inverted, 1 is inverted
124/125 3	External fault 1 / external fault 2
05	Frequency converter enters fault / fault indication
[0]	0 = from PLC (internal)
	1 = fault via digital input 1
	2 = fault via digital input 2
	3 = fault via digital input 3
	5 = fault via virtual digital output 1

Parameter / KT level	Setting / description / comment
127/128 2	PID fixed setpoint 2 / 3 / 4 / 5 / 6 / 7
129/130	
131/132	
0100 %	PID fixed setpoint specification 2 / 3 / 4 / 5 / 6 / 7 for the PID process controller
[0]	(must be selected in parameter 005)
133 2	PID fixed setpoint mode
02	Selection of the PID fixed setpoints used
[2]	0 = PID fixed setpoint 1 (digital input 1)
	1 = PID fixed setpoint 1 - 3 (digital input 1, 2)
	2 = PID fixed setpoint 1 - 7 (digital input 1, 2, 3)
134/135 2	Process data in 3 / 4 / 5 / 6
136/137	
36	Actual bus value no. 3 ➡ see process value table (actual values)
[-]	Actual bus value no. 4
	Actual bus value no. 5
	Actual bus value no. 6
139 3	MOP digital input
07	Input sources for setpoint origin of motor potentiometer:
[3]	0 = digital input 1 increases + digital input 2 reduces the setpoint
	1 = digital input 1 increases + digital input 3 reduces the setpoint
	3 = digital input 2 increases + digital input 3 reduces the setpoint
	6 = analogue input 1 increases + analogue input 2 reduces the setpoint
	7 = PLC (internal)
140 3	MOP response time
0.021000 s	Response time to permanent pressing of the motor potentiometer input sources
[0.3]	
141 3	MOP step time ⇒ P051
0.021000	Cycle time with which the setpoint is increased or reduced by the step range configured in
s	parameter 51
[0.04]	
142 3	MOP reference memory
0; 1	Activates the storage of the motor potentiometer setpoint (and thus also the loading of this
[0]	saved stepoint as start value after power ON):
	0 = storage disabled
	1 = storage enabled
143 3	MOP stored value
0100 %	Memory for motor potentiometer setpoint
[0]	➡ if the motor potentiometer setpoint was not changed for 2 seconds and differs from the setpoint saved last, this value is saved!
144 2	PID maximum setpoint
0100 %	PID setpoint limit
[100]	The PID setpoint from the setpoing origin is limited to this setpoint.

Parameter / KT level	Setting / description / comment
150 3	Converter type
010000	Only written by BECKER to define the converter in the KombiTool
[101]	
151 2	Hardware status
010000	Only written by BECKER to define the parameter record in the KombiTool
[1]	
152 2	Software status
010000	Only written by BECKER to define the parameter record in the KombiTool
[1]	
153 0	Parameter record ID
010000	Only written by BECKER to define and ID for the parameter record
[-]	
154 2	Alternative setpoint origin
011	Determines the source from which the target value is to be read.
[0]	0 = internal potentiometer
	1 = analogue input 1
	2 = analogue input 2
	3 = manual control unit (MMI)
	4 = serial interface RS-485 (USS or SAS protocol)
	5 = PLC (internal)
	8 = PID fixed value (see parameters P83 & P127-133)
	10 = analogue input 3
	11 = analogue input 4
155 2	Alternative start/stop origin ➡ for release
011	Selection of the source for SW release:
[0]	0 = digital input 1
	1 = digital input 2
	2 = digital input 3
	3 = PLC (internal)
	4 = analogue input 1
	5 = analogue input 2
	7 = serial interface RS-485 (USS or SAS protocol) 9 = autostart
	9 = autostart 10 = fixed frequency release
	11 = internal potentiometer 0% Off / > 0.5% On

Parameter /	Setting / description / comment
KT level	
156/157 2	Function (digital input 2 / digital input 3)
010	Additional functions for digital inputs 2 and 3
[0]	Caution: Digital inputs 2 and 3 must not be parametrised with an identical function!
	<u>Switching level</u> : Low < 5V / High > 15V
	0 = additional function disabled
	1 = change to setpoint origin 2 (P154) + start/stop origin 2 (P155)
	2 = change to pressure (0V) / vacuum (24)
	3 = Control change (according to P008) (0V) / speed-controlled operation (24V)
	4 = change to fixed frequency operating mode
	5 = change to emergency operation
	Setpoint origin internal potentiometer, release of digital input 1 and speed-controlled operation
	6 = alarm 1 24V: Alarm trigger ➡ FC enters fault, fault indication
	7 = alarm 2 24V: Alarm trigger ➡ FC enters fault, fault indication
	8 = stop via ramp
	9 = immediate stop (zero current)
	10 = value from BECKERfunction
158/160 2	Input type (analogue input 3 / analogue input 4)
1; 2	Change of the analogue inputs between voltage or current input:
[1]	1 = voltage input
	2 = current input
159/161 2	% min. value (analogue input 3 / analogue input 4)
0100 %	Specifies the minimum value of the analogue inputs 3+4 as a percentage of the range
[0]	Example: 010V or 020mA ⇒ 0%100%
	2…10V or 4…20mA ➡ 20%…100%
	Note: % max. value: 100% with 10V / 20mA (z.B. 10V at A _{in} ➡ stepoint f _{max} 100Hz)
162 2	Function (analogue output 2) P042
163 2	Minimum value (analogue output 2) P043
164 2	Maximum value (analogue output 2) \Rightarrow P080
165/171 2	Limit value analogue input 2: Activation threshold
	(relay 1 / relay 2)
010000	Activation threshold related to the selected process variable
[0]	(specify value in physical units : mA, V (020mA / 010V))
	see parameters 62 / 65 relay function: 54
166/172 2	Limit value analogue input 2: Deactivation threshold
	(relay 1 / relay 2)
010000	Deactivation threshold related to the selected process variable
[0]	(specify value in physical units : mA, V (020mA / 010V))
	see parameters 62 / 65 relay function: 54

Parameter / KT level	Setting / description / comment
167/173 2	Limit value analogue input 3: Activation threshold
	(relay 1 / relay 2)
010000	Deactivation threshold related to the selected process variable
[0]	(specify value in physical units : mA, V (020mA / 010V))
	see parameters 62 / 65 relay function: 55
168/174 2	Limit value analogue input 3: Deactivation threshold
	(relay 1 / relay 2)
010000	Deactivation threshold related to the selected process variable
[0]	(specify value in physical units : mA, V (020mA / 010V))
	see parameters 62 / 65 relay function: 55
169/175 2	Limit value analogue input 4: Activation threshold
	(relay 1 / relay 2)
010000	Deactivation threshold related to the selected process variable
[0]	(specify value in physical units : mA, V (020mA / 010V))
	see parameters 62 / 65 relay function: 56
170/176 2	Limit value analogue input 4: Deactivation threshold
	(relay 1 / relay 2)
010000	Deactivation threshold related to the selected process variable
[0]	(specify value in physical units : mA, V (020mA / 010V))
	see parameters 62 / 65 relay function: 56
177 2	Pressure / vacuum mode
0;1	Selection of pressure or vacuum
[0]	0 = pressure;
	1 = vacuum
178 2	Minimum pressure
01000	(potentiometer full left deflection) in the operating mode sensorless control or with minimum
mbar	control voltage.
[0]	
179 2	Maximum pressure
0 1 0 0 0 mbar	(potentiometer full right deflection) in the operating mode sensorless control or with maxi- mum control voltage.
[-]	mum control voltage.
180/181 2	Pressure/temperature characteristic (K0 / K1 / K2)
182	
-1000	Temperature limit
1000 W/Hz	
[-]	
183/184 2	Vacuum/temperature characteristic (K0 / K1 / K2)
185	
-1000	Temperature limit
1000 W/Hz	
[-]	

Parameter /	Setting / description / comment		
KT level			
186 2	Temperature limit/time		
032767 s	max. time for exceeding the temperature limit		
[30]			
187/188 3	Values for pressure characteristics (K1 / K2 / K3 / K4 / K5 / K6)		
189/ 190			
191/192			
[-]	for operating mode internal control in pressure operation		
193/194 3	Values for vacuum characteristics (K1 / K2 / K3 / K4 / K5 / K6)		
195/ 196			
197/ 198			
[-]	for operating mode internal control in vacuum operation		
201 2	Function (virtual output)		
019	Selection of the process variable which causes the virtual output to be switched on or off if		
[-]	the limit value is exceeded or fallen below (0=disabled)		
	$1 = U_d$ (intermediate circuit voltage)		
	$2 = U_N$ (mains voltage)		
	$3 = U_{Motor}$ (motor voltage)		
	$4 = I_{Motor} (motor current)$		
	$5 = f_{ACT}$ (ACTUAL frequency)		
	8 = IGBT temperature		
	9 = inside temperature		
	10 = fault (switches during fault / collective fault message)		
	11 = inverted fault (switches OFF during fault)		
	12 = limit stage release		
	13 = digital input 1		
	14 = digital input 2		
	15 = digital input 3		
	17 = ready for operation		
	18 = ready		
	19 = operation (collective operational message)		
202 2	Minimum value (virtual output)		
-10000	Activation threshold of the virtual output related to the selected process variable (specify value in physical units: A, V, Hz, °C)		
10000			
[0]			
203 2	Maximum value (virtual output)		
-10000	Deactivation threshold of the virtual output related to the selected process variable (specify value in physical units: A, V, Hz, °C)		
10000			
[0]			
204 2	Activation delay (virtual output)		
099 s			
[1]			

r/	Setting / description / comment
2	Deactivation delay (virtual output)
3	Technology parameters (11-30)
	separately documented dependent on firmware version
2	Error group 1
	Error group 2
	Error group 3
	Error group 4
	see chapter 6.2 (error messages)
2	Operating hours
2	Power ON counter
2	Consumption
	2 3 2 2 2 2

Table 13: Parameter overview

5.2 Diagnostic parameters

The following diagnostic parameters can be read via the KombiTool.

Parameter	Unit	KombiTool name	Description
number		► Diagnosis	
1000	Hz	factual	Actual frequency
1001	V	u motor	Motor voltage
1002	А	i motor	Motor current
1003	°C	hybrid temperature	
1004	V	ud intermediate circuit	Intermediate circuit voltage
1005	Hz	f target controller	Target frequency of the current controller
1006	V	u mains	Mains voltage
1007	А	id intermediate circuit	intermediate circuit current
1008	°C	Internal temperature	
1011	1	Error group 1	Chapter 6.2
1012	1	Error group 2	Chapter 6.2
1013	1	Error group 3	Chapter 6.2
1014	1	Error group 4	Chapter 6.2
1015	1	Digital IN all	Status of all digital inputs
1016	V	Analogue IN1	Analogue input 1
1017	V	Analogue IN2	Analogue input 2

1019	Hz	f target input	Target frequency of the setpoint origin
1020	%	PID actual	Actual value process controller
1021	%	PID target	Process controller setpoint
1022	V	Analogue OUT1	Analogue output 1
1023	W	P intermediate circuit	Intermediate circuit power
1024	V	Analogue IN3	Analogue input 3
1025	V	Analogue IN4	Analogue input 4
1026	V	Analogue OUT2	Analogue output 2
1027	W	P temp. limit	max. power of the temperature limitation
1028	S	Temp. limit counter	Temperature limitation counter
1030	rpm	n mech. motor	Motor speed
1031	Nm	M motor	Motor torque
1032	W	P motor	Motor rating
1035	W	Ptarget int. calc.	calculated power for the internal pressure control
1038	hours	Operating hours	
1039	1	Power ON counter	
1040	kWh	Consumption	
1041	1	Status Rel.1 Rel.2	Status of relay 1 and 2

Table 14: Diagnostic parameters

6. Error detection and removal

Mortal danger from to electric shock!

Death or serious injury!

Disconnect the equipment from the voltage supply and protect it against re-activation.

If damaged parts or components need replacing, only replace with original parts.

2 mim

1

Danger from electric shock and electrical discharge. Wait two minutes (discharge time of the capacitors) after shut-down

6.1 List of errors and system faults

In case of an error the frequency converter shuts down. The corresponding error numbers can be found in the flashing code table below (chapter 6.2) or in the PC tool.

IMPORTANT INFORMATION

Error messages can only be acknowledged once the error has been remedied!

Error messages can be acknowledged as follows:

- ▷ digital input (programmable)
- ▷ via the KombiTool (P1011...1014)
- \triangleright via the MMI (manual control unit)
- \triangleright automatic acknowledgement
- \triangleright switch equipment off and back on
- ▷ via field bus (CANOpen, Profibus DP, EtherCAT)

6.2 Table of possible error messages

In case of a fault (red LED constantly lit) the error is indicated via an extended flashing code of the green LED. The green LED flashes briefly 1-10 times. At the end of the flashing code there is a pause of 5 seconds before the code is repeated. The following table contains an overview:

.

D.		
/II Name	Description	Cause
Cable break Analogue In 1 (420mA / 2 - 10V)	Current or voltage below the lower limit of analogue input 1	Cable break, faulty or discon- nected external sensor
Cable break Analogue In 2 (420mA / 2 - 10V)	Current or voltage below the lower limit of analogue input 2	Cable break, faulty external sensor
Alarm 1 System error	Customer-specific error via function of the digital inputs	dependent on application
Alarm 2 System error	Customer-specific error via function of the digital inputs	dependent on application
External fault 1	The parametrised error input (digital input) is active	
External fault 2	The parametrised error input (digital input) is active	
Trip IGBT	Protection of the IGBT mod- ule against overcurrent has been triggered	Short circuit in the motor or motor feed line / controller settings
Overcurrent	Maximum output current of the converter exceeded	Insufficient cooling / low mo- tor speed and high torque / switching frequency too high / ramp times too low / brake not released
FC overtempe- rature	Internal temperature too high	Insufficient cooling, low mo- tor speed and high torque, switching frequency too high.
Motor overtem- perature	Motor temperature moni- toring with PTC/bimetallic switch has tripped	Motor overload (e.g. high torque at low speed) / ambi- ent temperature too high
IGBT module overtemperature		Insufficient cooling, low speed and high torque, switching frequency too high
Frequency con- verter overtem- perature	Internal temperature too high	Insufficient cooling, low speed and high torque, switching frequency too high / permanent overload
Mains failure		A phase is missing / mains voltage has been disrupted
Ground leak	Ground leak during a motor phase	Insulation fault
Motor connec- tion disrupted	No motor current in spite of control through FC	No motor connected or motor not connected correctly.
	Motor connec- tion disrupted	phase Motor connec- No motor current in spite of

Error		Error	no.			
group	-	Kombi	<u>Fool</u>			
LED			MMI	Name	Description	Cause
*	2	16	21	Bus timeout	Setpoint specification via bus No response from bus node or MMI/PC	Bus line interruption
5x	2	32	22	Max. automatic acknowledge- ments	The number of maximum au- tomatic acknowledgements (1.182) was exceeded	
6x	1	16384	15	Blockage	Motor blocked	mechanical fault or overload
	3	1024	42	I ² t motor protec- tion shut-down	The internal I ² t motor protec- tion has tripped	Permanent overload
7x	4	2	49	Overload	Max. overload of the fre- quency converter exceeded for more than 60 sec.	
8x	3	2	33	Intermediate cir- cuit overvoltage	The maximum intermedi- ate circuit voltage has been exceeded	Feedback by motor in gen- erator mode / mains voltage too high / faulty setting of controller / brake resistance not connected or faulty / ramp times too short
	3	4	34	Undervoltage of intermediate cir- cuit	The minimum intermediate circuit voltage has not been reached	Mains voltage too low / mains connection faulty
	1	1	1	24V undervolt- age	Supply voltage for the appli- cation is less than 15V	24V supply overload
9x	1	2	2	24V overvoltage	Supply voltage for the application is greater than 31V	Internal 24V supply is NOK or external supply is not NOK
JA	1	1024	11	System error	No voltage is present at the consumer	Operation with 24 V without mains supply
Key:	-	LED fl	ashes	, LED flashes	s rapidly	

Error group		Error Kombi				
LED			MMI	Name	Description	Cause
			3	System error	Contact BECKER for this fault	
			4	System error	Contact BECKER for this fault	
			5	System error	Contact BECKER for this fault	
			6	System error	Contact BECKER for this fault	
			7	System error	Contact BECKER for this fault	
	1	128	8	Internal applica- tion	The internal communication is faulty	EMC interference
			9	System error	Contact BECKER for this fault	
- — 10x			12	System error	Contact BECKER for this fault	
IUX			19	System error	Contact BECKER for this fault	
			20	System error	Contact BECKER for this fault	
			25	System error	Contact BECKER for this fault	
			37	System error	Contact BECKER for this fault	
			41	System error	Contact BECKER for this fault	
			44	System error	Contact BECKER for this fault	
			50	System error	Contact BECKER for this fault	
	1	512	10	Parameter dis- tributor	The internal distribution of parameters during initialisa- tion failed	Parameter set is incomplete
	3	16384	46	Motor param- eters	Plausibility check for motor parameters failed	Parameter record NOK
	3	32768	47	Frequency con- verter param- eters	Plausibility check for fre- quency converter parameters failed	Parameter record NOK
	4	1	48	Rating plate data	No valid motor rating plate data	Motor rating plate data not yet entered (delivery state)
Key:	-)	LED fl	ashes	, LED flashe	s rapidly	

.

Table 14: Overview of possible error messages

7. Disassembly and disposal

7.1 Disassembly of the frequency converter

Mortal danger from to electric shock!

Death or serious injury!

Disconnect the frequency converter from the voltage supply and protect it against re-activation.

Danger from electric shock and electrical discharge. Wait two minutes (discharge time of the capacitors) after shut-down

- 1. Open drive the cover of the frequency converter.
- 2. Detach the cables at the terminals.
- 3. Remove all cables.
- 4. Remove connection bolts between frequency converter and adapter plate.
- 5. Remove frequency converter.

7.2 Information for correct disposal

Dispose of frequency converter, packaging and replaced parts in accordance with the regulations of the country in which the frequency converter has been installed.

The frequency converter may not be disposed of with household waste.

8. Technical data

8.1 General data

Description / installation size	VAU 4/4	VAU(w) 7.5/3		VAU 1	1-22/3	
Typical motor power to be connected [kW] (4 pole asynchronous motor)	4	7.5	11	15	18.5	22
Ambient temperature [° C]	- 25 (non condensing) to + 5	50 (withc	out derat	ing)	
Mains voltage [V]		3~ 400 – 15 % 4	80 +10	% ¹⁾		
Mains frequency [Hz]		47 to 63				
Mains configurations		TN / TT				
Mains current [A]	7.9	14.8	23.2	28.2	33.2	39.8
FC output current, eff. [A] [I _N at 8 kHz / 400 V]	9.5	17.8	28.0	34.0	40.0	48.0
Min. brake resistance [Ω]	50	50			_	
Maximum overload	150)% of nominal current	for 60 se	ec		130 %
Switching frequency [kHz]	4, 8, 16, (factory setting 8)					
Rotating field frequency [Hz]		0 - 400				
Protective function		and undervoltage, I²t lir converter temperature, f				otection
Recommendations for LS	C 16 C 25 C 63					
switches ²⁾	Property C = line safety switch					
	Caution : The cross section of the supply line must be designed according to the installation type and maximum permitted current. The contractor commissioning the device must ensure protection for the mains power line.					
Dimensions [L x W x H] mm	270 x 189 x 140	307 x 223 x 181 VAU w (307x223x155)		414 x 29	94 x 232	
Weight incl. adapter plate [kg]	5.0	8.7		21	.0	
Protection type [IPxy]		65		5	5	
EMC	Interfer	mmunity according to E ence emission: 1st env nterference immunity: 2	vironmer	it catego	ory C2	
Vibration resistance (DIN EN 60068-2-6)		50 m/s²; 5…2				
Shock resistance (DIN EN 60068-2-27)		300 m/s²	2			

Table 14: Technical data (subject to technical modifications)

¹ supply reduction of approx. 50 % possible (reduced output power)

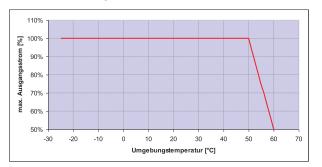
²⁾ For the exact information on the pre-fuse for individual devices, please refer to the device data sheet or the operating instructions of the device.

Inputs/outputs	Description
Digital inputs 1 – 3	 Switching level low < 5 V / high > 15 V I_{max} (at 24 V) = 3 mA R_{in} = 8.6 kOhm
Analogue inputs 1 – 4	 In +/- 10 V or 0 – 20 mA In 2 – 10 V or 4 – 20 mA 10-bit resolution Tolerance +/- 2 % Voltage input: - R_{in} = 10 kOhm Current input: - Working resistance = 500 Ohm
Relays 1, 2	 Alternating contact (NO/NC/COM) Maximum switching power with resistive load (cos φ = 1): 5 A at ~ 230 V or = 30 V with inductive load (cos φ = 0.4 and L/R = 7 ms): 2 A at ~ 230 V or = 30 V
	Maximum response time: 7 ms ± 0.5 ms Service life: 100,000 switching cycles
Analogue output 1 (current)	 Short-circuit proof I_{out} = 0 20 mA Working resistance = 500 Ohm Tolerance +/- 2 %
Analogue output 1 (voltage)	- Short-circuit proof - $U_{out} = 010 V$ - Imax = 10 mA - Tolerance +/- 2 %
Voltage supply 24 V	 Auxiliary voltage U = 24 V DC Short-circuit proof I_{max} = 100 mA External supply of 24 V possible
Voltage supply 10 V	 Auxiliary voltage U = 10 V DC Short-circuit proof I_{max} = 30 mA

Table 15: Interface specification

The frequency converters include the option of connecting motor temperature monitoring (PTC/bimetallic switch).

8.2 Derating of output power


Frequency converters of the VAU series have two integrated PTC resistors as standard which monitor both the heat sink temperature and the internal temperature. As soon as a permissible IGBT temperature of 95°C or a permissible internal temperature of 85°C is exceeded, the frequency converter shuts down.

With the exception of the 22kW controller (VAU 11-22/3 130%), all frequency converters of type VAU are designed for an overload of 150% for 60sec (every 10min).

Reductions in the ability to handle overload and/or its duration should be taken into account in the following circumstances:

- ▷ A switching frequency permanently set too high >8 kHz (load-dependent).
- > A permanently increased heat sink temperature, caused by a blocked air flow or a thermal blockage (soiled cooling ribs).
- > Depending on the type of assembly, permanently excessive ambient temperature.

The respective max. output values can be determined from the following characteristic curves.

8.2.1 Derating due to increased ambient temperature

Fig. 23: Derating for frequency converter mounted on motor (all sizes)

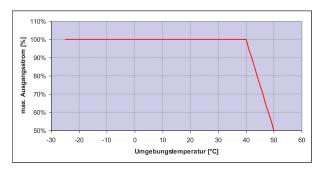


Fig. 24: Derating for wall-mounted frequency converters (VAU 4/4 & VAU 7.5/3)

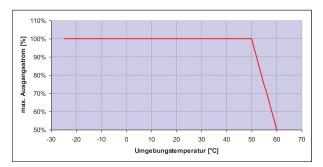


Fig. 25: Derating for wall-mounted frequency converters (VAU 7.5/3 with fan option and VAU 11-22/3)

www.becker-international.com

8.2.2 Derating due to installation altitude

The following applies to all VAU frequency converters:

- \triangleright No reduction in performance is required in S1 mode up to 1000m above MSL.
- ▷ A reduction in performance of 1% for every 100 m is required from 1000m to 2000m. Overvoltage category 3 is observed!

▷ Overvoltage category 2 should be observed from 2000 m to 4000 m because of the lower air density! In order to observe the overvoltage category:

 \triangleright use an external overvoltage protection in the supply cable of the VAU.

reduce the input voltage. Contact the Service department of Gebrüder BECKER GmbH.

The respective max. output values can be determined from the following characteristic curves.



Fig. 26: Derating of maximum output current as a result of installation altitude

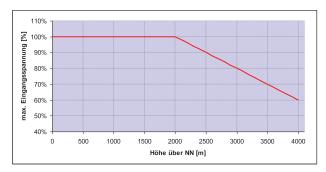


Fig. 27: Derating of maximum input voltage as a result of installation altitude

8.2.3 Derating due to cycle frequency

The following diagram shows the output current dependent on the switching frequency. To limit the heat loss in the frequency converter, the output current must be reduced.

Note: The switching frequency is not reduced automatically!

The max. output values can be determined from the following characteristic curve.

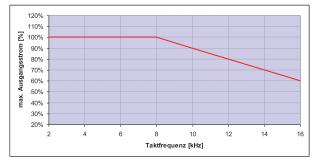


Fig. 28: Derating of maximum output current as a result of switching frequency

9. Approvals, standards and guidelines

9.1 EMC limit classes

Please note that EMC limit classes are only reached if the standard switching frequency of 8 kHz is complied with.

Depending on the installation material used and/or extreme ambient conditions, it might be necessary to use additional sheath wave filters (ferrite rings). If the device is wall-mounted, the length (max. 3 m) of the shielded motor cables (with large surfaces at both ends) may not exceed the permissible limits.

Wiring suitable for EMC also requires that EMC glands be used on both sides (frequency converter and motor).

INFORMATION

In a residential environment this product can cause high-frequency interference requiring interference suppression measures.

9.2 Classification according to IEC/EN 61800-3

The generic standard defines test procedures and severity levels for every environment in the frequency converter category which have to be complied with.

Definition of environment

First environment (residential, commercial and industrial area):

All "areas" which are directly supplied by a public low-voltage connection, such as:

- \triangleright residential area, e.g. houses, apartments etc.
- ▷ retail area, e.g. shops, supermarkets
- \triangleright public institutions, e.g. theatres, stations
- \triangleright outside areas, e.g. petrol stations and parking areas
- ▷ light industry, e.g. workshops, laboratories, small businesses

Second environment (industry):

Industrial environments with their own supply network separated from the public low-voltage supply by a transformer.

9.3 Standards and directives

The following specifically apply:

- ▷ Directive on Electromagnetic Compatibility (Directive 2004/108/EC of the Council EN 61800-3:2004).
- ▷ Low Voltage Directive (Directive 2006/95/EC of the Council EN 61800-5-1:2003)

.

9.4 UL approval

9.4.1 UL specification (English version)

Maximum Ambient Temperature (without models Suffix S10):

Electronic	Adapter	Ambient	Suffix
INV MB 4 2.2	ADP MB WDM	45° C	-
INV MB 4 3.0	ADP MB WDM	40° C	-
INV MB 4 4.0	ADP MB WDM	35° C	-
INV MC 4 5.5	ADP MC WDM	40° C	Gx0
INV MC 4 7.5	ADP MC WDM	35° C	Gx0
INV MC 4 9.2	ADP MC WDM	20° C	Gx0
INV MC 4 5.5	ADP MC WDM	55° C	Gx1
INV MC 4 7.5	ADP MC WDM	50° C	Gx1
INV MC 4 9.2	ADP MC WDM	50° C	Gx1
INV MC 4 5.5	ADP MC WDM	50° C	Gx2
INV MC 4 7.5	ADP MC WDM	45° C	Gx2
INV MC 4 9.2	ADP MC WDM	45° C	Gx2
INV MD 4 11.0	ADP MD WDM	55° C	-
INV MD 4 15.0	ADP MD WDM	50° C	-
INV MD 4 18.5	ADP MD WDM	40° C	-
INV MD 4 22.0	ADP MD WDM	35° C	-
INV MD 4 28.0	ADP MD WDM	10° C	-

Maximum ambient temperature (with suffix S10):

Electronic	Adapter	Ambient	Suffix
INV MC 4 5.5	ADP MC WDM	40° C	S10
INV MC 4 7.5	ADP MC WDM	35° C	S10

Required Markings

Enclosure intended for use with field-installed conduit hubs, fittings or closure plates UL approved in accordance to UL514B and CSA certified in accordance to C22.2 No. 18, environmental Type 1 or higher.

The VAU INV MC 4 with suffix S10 is for use in Pollution Degree 2 only.

Internal Overload Protection Operates within 60 seconds when reaching 150 % of the Motor Full Load Current Suitable for use on a circuit capable of delivering not more than 5 kA rms symmetrical amperes, 230 Volts for INV Mx 2 or 480 Volts for INV Mx 4, maximum when protected by fuses.

"Warning" - Use fuses rated 600 V/30 A for INV MB 4 only.

"Warning" – Use fuses rated 600 V/30 A for INV MC 4 only.

"Warning" - Use fuses rated 600 V/70 A for INV MD 4 only.

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes.

All wiring terminals marked to indicate proper connections for the power supply, load and control circuitry. The tightening, torque to connect the motor terminals, is 26.55 IB/in (size A to C) and 5.31 Ib/in to connect the PTC (in all sizes).

Instruction for operator and servicing instructions on how to mount and connect the products using the intended motor connection adapter, please see chapter 3 in the operating manual.

.

Use 75° C copper wires only.

Drives do not provide over temperature sensing. For use in Pollution degree 2 only (only for model S10).

For Mx 4 used in Canada: TRANSIENT SURGE SUPPRESSION SHALL BE INSTALLED ON THE LINE SIDE OF THIS EQUIPMENT AND SHALL BE RATED 277 V (PHASE TO GROUND), 480 V (PHASE TO PHASE), SUITABLE FOR OVERVOLTAGE CATEGORY III, AND SHALL PROVIDE PROTECTION FOR A RATED IMPULSE WITHSTAND VOLTAGE PEAK OF 2.5 kV

Electronic	Overall heatsink dimensions	Surrounding	Suffix	
INV MB 4 2.2	(200x40x250) mm	60° C	Gx3	
INV MB 4 3.0	(200x40x250) mm	60° C	Gx3	
INV MB 4 4.0	(200x40x250) mm	60° C	Gx3	
INV MC 4 5.5	(216x83x300) mm	65° C	Gx3	
INV MC 4 7.5	(216x83x300) mm	65° C	Gx3	
INV MD 4 11.0	to be defined	to be defined	Gx3	
INV MD 4 15.0	to be defined	to be defined	Gx3	
INV MD 4 18.5	to be defined	to be defined	Gx3	
INV MD 4 22.0	to be defined	to be defined	Gx3	

Maximum Surrounding Temperature (sandwich version):

CONDITIONS OF ACCEPTABILITY:

Use - For use only in complete equipment where the acceptability of the combination is determined by Underwriters Laboratories Inc.

- 1. These drives are incomplete in construction and have to be attached to an external heatsink in the end-use. Unless operated with the heatsink as noted in item 2 of the conditions of acceptability below, temperature test shall be conducted in the end-use.
- 2. Temperature test was conducted with drive installed on aluminum heatsink, overall dimensions and ribs shape as outlined below:
- 3. Suitability of grounding for the combination of drive and heatsink needs to be verified in accordance with the end-use standard.
- 4. Temperature test was not conducted on models INV MD 4. Suitability of drive heatsink combination shall be determined by subjecting to temperature test in the end-use.

Required Markings

Internal Overload Protection Operates within 60 seconds when reaching 150 % of the Motor Full Load Current. Suitable for use on a circuit capable of delivering not more than 5 kA rms symmetrical amperes, 230 Volts for INV Mx 2 or 480 Volts for INV Mx 4, maximum when protected by fuses.

"Warning" - Use fuses rated 600 V/30 A for INV MB 4 only.

"Warning" - Use fuses rated 600 V/30 A for INV MC 4 only.

"Warning" – Use fuses rated 600 V/70 A for INV MD 4 only.

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes.

All wiring terminals marked to indicate proper connections for the power supply, load and control circuitry.

Instruction for operator and servicing instructions on how to mount and connect the products using the intended motor connection adapter, please see chapter 3 in the operating manual.

.

Use 75° C copper wires only.

Drives do not provide over temperature sensing.

For use in Pollution degree 2 only.

For Mx 4 used in Canada: TRANSIENT SURGE SUPPRESSION SHALL BE INSTALLED ON THE LINE SIDE OF THIS EQUIPMENT AND SHALL BE RATED 277 V (PHASE TO GROUND), 480 V (PHASE TO PHASE), SUITABLE FOR OVERVOLTAGE CATEGORY III, AND SHALL PROVIDE PROTECTION FOR A RATED IMPULSE WITHSTAND VOLTAGE PEAK OF 2.5 kV

9.4.2 Homologation CL (Version en française)

Électronic	Adaptateur	Ambiante	Suffixe
INV MB 4 2.2	ADP MB WDM	45° C	-
INV MB 4 3.0	ADP MB WDM	40° C	-
INV MB 4 4.0	ADP MB WDM	35° C	-
INV MC 4 5.5	ADP MC WDM	40° C	Gx0
INV MC 4 7.5	ADP MC WDM	35° C	Gx0
INV MC 4 9.2	ADP MC WDM	20° C	Gx0
INV MC 4 5.5	ADP MC WDM	55° C	Gx1
INV MC 4 7.5	ADP MC WDM	50° C	Gx1
INV MC 4 9.2	ADP MC WDM	50° C	Gx1
INV MC 4 5.5	ADP MC WDM	50° C	Gx2
INV MC 4 7.5	ADP MC WDM	45° C	Gx2
INV MC 4 9.2	ADP MC WDM	45° C	Gx2
INV MD 4 11.0	ADP MD WDM	55° C	-
INV MD 4 15.0	ADP MD WDM	50° C	-
INV MD 4 18.5	ADP MD WDM	40° C	-
INV MD 4 22.0	ADP MD WDM	35° C	-
INV MD 4 28.0	ADP MD WDM	10° C	-

Température ambiante maximale (sans modèles suffixe S10):

Température environnante maximale (avec suffixe S10):

Électronic	Adaptateur	Ambiante	Suffixe
INV MC 4 5.5	ADP MC WDM	40° C	S10
INV MC 4 7.5	ADP MC WDM	35° C	S10

Mentions requises

Boîtier prévu pour une utilisation avec entrées de conduit filetées installées sur le terrain, raccords ou plaques d'obturation approuvées UL conformément à UL514B et certifiées CSA conformément à C22.2 No. 18, étiquetage environnemental de type 1 ou plus.

Le variateur VAU INV MC 4 avec le suffixe S10 est exclusivement conçu pour une utilisation en environnement de degré de pollution 2.

La protection interne contre les surcharges se met en marche en l'espace de 60 secondes une fois 150 % du courant nominal du moteur atteints.

Convient pour une utilisation sur un circuit capable de livrer pas plus de 5 kA ampères symétriques rms, 230 volts pour INV Mx 2 ou 480 volts pour INV Mx 4 maximum en cas de protection par fusibles.

« Avertissement » – Utiliser des fusibles d'une valeur nominale de 600 V/30 A pour INV MB 4 uniquement.

« Avertissement » – Utiliser des fusibles d'une valeur nominale de 600 V/30 A pour INV MC 4 uniquement.

« Avertissement » – Utiliser des fusibles d'une valeur nominale de 600 V/70 A pour INV MD 4 uniquement.

La protection intégrée contre les courts-circuits à semi-conducteur n'assure pas la protection du circuit de dérivation. Le circuit de dérivation doit être protégé conformément aux instructions du fabricant, au code national d'électricité et à tout autre code local additionnel.

Toutes les bornes de câblage avec repères pour les connexions correctes pour l'alimentation électrique, la charge et les circuits de commande.

Le couple de serrage pour la connexion des bornes du moteur est de 26,55 lb/in (taille A à C) et de 5,31 lb/in pour la connexion CTP (toutes les tailles).

Pour les instructions destinées à l'opérateur et les instructions de service relatives au montage et à la connexion des produits à l'aide de l'adaptateur de connexion du moteur prévu à cet effet, voir les chapitres 3 contenus dans le Manuel d'utilisation.

Utiliser uniquement des câbles en cuivre 75° C.

Les entraînements ne permettent pas la détection de surtempérature.

Réservé exclusivement à une utilisation en environnement de pollution de degré 2 (seulement pour le modèle S10).

Concernant le Mx 4 utilisé au Canada : LA SUPPRESSION DE TENSION TRANSITOIRE DOIT ÊTRE INSTALLÉE CÔTÉ LIGNE DE CET ÉQUIPEMENT ET AVOIR UNE VALEUR NOMINALE DE 277 V (PHA-SE-TERRE), 480 V (PHASE-PHASE), EN COMPATIBILITÉ AVEC LA CATÉGORIE DE SURTENSION III, ET DOIT OFFRIR UNE PROTECTION CONTRE UN PIC DE TENSION ASSIGNÉE DE TENUE AUX CHOCS DE 2,5 kV

Électronic	Dimensions hors	Environnante	Suffixe
	tout du dissipateur		
INV MB 4 2.2	(200x40x250) mm	60° C	Gx3
INV MB 4 3.0	(200x40x250) mm	60° C	Gx3
INV MB 4 4.0	(200x40x250) mm	60° C	Gx3
INV MC 4 5.5	(216x83x300) mm	65° C	Gx3
INV MC 4 7.5	(216x83x300) mm	65° C	Gx3
INV MD 4 11.0	to be defined	to be defined	Gx3
INV MD 4 15.0	to be defined	to be defined	Gx3
INV MD 4 18.5	to be defined	to be defined	Gx3
INV MD 4 22.0	to be defined	to be defined	Gx3

Température environnante maximale (version sandwich):

CONDITIONS D'ACCEPTABILITÉ:

Utilisation - Réservé à une utilisation dans un équipement complet pour lequel l'acceptabilité de la combinaison est déterminée par Underwriters Laboratories Inc.

- 1. Ces entraînements sont incomplets et doivent être raccordés à un dissipateur externe en utilisation finale. Sauf en cas d'utilisation avec dissipateur comme mentionné au point 2 des conditions d'acceptabilité ci-dessous, il est conseillé d'effectuer un test de température en utilisation finale.
- 2. Le test de température a été effectué avec un entraînement installé sur un dissipateur en aluminium, dimensions hors tout et forme d'ailettes comme indiqué ci-dessous.

- 3. La possibilité de mise à la terre de la combinaison entraînement et dissipateur doit être vérifiée conformément à la norme d'utilisation finale.
- 4. Le test de température n'a pas été conduit sur les modèles INV MD 4. Déterminer si la combinaison entraînement dissipateur est appropriée à l'aide d'un test de température en utilisation finale.

Mentions requires

La protection interne contre les surcharges se met en marche en l'espace de 60 secondes une fois 150 % du courant nominal du moteur atteints.

Convient pour une utilisation sur un circuit capable de livrer pas plus de 5 kA ampères symétriques rms, 230 volts pour INV Mx 2 ou 480 volts pour INV Mx 4 maximum en cas de protection par fusibles.

« Avertissement » – Utiliser des fusibles d'une valeur nominale de 600 V/30 A pour INV MB 4 uniquement.

« Avertissement » – Utiliser des fusibles d'une valeur nominale de 600 V/30 A pour INV MC 4 uniquement.

« Avertissement » – Utiliser des fusibles d'une valeur nominale de 600 V/70 A pour INV MD 4 uniquement.

La protection intégrée contre les courts-circuits à semi-conducteur n'assure pas la protection du circuit de dérivation. Le circuit de dérivation doit être protégé conformément aux instructions du fabricant, au code national d'électricité et à tout autre code local additionnel.

Toutes les bornes de câblage avec repères pour les connexions correctes pour l'alimentation électrique, la charge et les circuits de commande.

Pour les instructions destinées à l'opérateur et les instructions de service relatives au montage et à la connexion des produits à l'aide de l'adaptateur de connexion du moteur prévu à cet effet, voir les chapitres 3 contenus dans le Manuel d'utilisation.

Utiliser uniquement des câbles en cuivre 75° C.

Les entraînements ne permettent pas la détection de surtempérature.

Réservé exclusivement à une utilisation en environnement de pollution de degré 2.

Concernant le Mx 4 utilisé au Canada: LA SUPPRESSION DE TENSION TRANSITOIRE DOIT ÊTRE INSTALLÉE CÔTÉ LIGNE DE CET ÉQUIPEMENT ET AVOIR UNE VALEUR NOMINALE DE 277 V (PHA-SE-TERRE), 480 V (PHASE-PHASE), EN COMPATIBILITÉ AVEC LA CATÉGORIE DE SURTENSION III, ET DOIT OFFRIR UNE PROTECTION CONTRE UN PIC DE TENSION ASSIGNÉE DE TENUE AUX CHOCS DE 2,5 kV

.

10 Information for maintenance and service

VAU frequency converters are maintenance-free with correct operation. Please also note the "general data" in chapter 8.1.

.

If the frequency converter is operated in dusty air, the cooling surfaces must be cleaned regularly. Any air inlet filters used in the control cabinet must also be cleaned or replaced regularly.

For repairs please contact your responsible national agency.

If a frequency converter is sent for repair, no warranty will be given for any add-on components, such as mains cables, potentiometer, external displays etc.!

Please remove all non-original parts from the frequency converter.

All ducts carrying cooling water must be drained (purge with compressed air).

www.becker-international.com